We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# I have 2 questions

0
1036
1

1. Some functions that aren't invertible can be made invertible by restricting their domains. For example, the function $$x^2$$ is invertible if we restrict $$x$$ to the interval $$[0,\infty)$$, or to any subset of that interval. In that case, the inverse function is $$\sqrt x$$. (We could also restrict $$x^2$$ to the domain $$(-\infty,0]$$, in which case the inverse function would be $$-\sqrt{x}$$.)

Similarly, by restricting the domain of the function $$f(x) = 2x^2-4x-5$$ to an interval, we can make it invertible. What is the largest such interval that includes the point $$x=0$$?

2. The function $$f(x) = \frac{cx}{2x+3}$$
satisfies $$f(f(x))=x$$, $$x\ne -\frac 32$$ for all real numbers . Find $$c$$.

Jun 20, 2017

### 1+0 Answers

#1
+1

1.  The vertex of this parabola is (1, -7)....so.....restricting the domain to  (-infinity, 1 ] will  make the function invertible...... and  x  = 0  lies within this interval

2. If f ( f(x) )  = x        we can write

c ( (cx) / [2x + 3] )

________________        =  x   multiply  throgh by the denominator on the left side

2 ( (cx/ [2x + 3]) + 3

c( (cx)) / [2x + 3] )  = x  [ 2 ( (cx) / [2x +  3] ) + 3]     simplify

c^2x / [2x + 3]  =  x [ 2cx + 6x + 9 ] / [2x + 3]

c^2x  =  2cx^2 + 6x^2  + 9x

2cx^2 + 6x^2 + (9 - c^2) x  = 0

Note....that for any x, this will equal 0 whenever

2c +  6 + (9-c^2)  = 0

-c^2  + 2c + 15  = 0     multiply through by -1

c^2  -  2c  - 15  = 0  factor

(c - 5) (c + 3)  = 0

So....setting each factor to 0 and  solving for c we have the possible values c = 5  or c = -3

Test c = 5  in  f(f(x))

5[5x /[2x + 3] ]                         [  25x ] / [2x + 3]

_______________     =        _________________  =   25x  /  [ 16x + 9 ]

2 [ 5x / [2x + 3]] + 3             [10x + 6x + 9]/ [2x + 3]

So  c = 5  is not a solution

Test  c  = -3  in  f (f (x))

-3 [ -3x / [2x + 3] ]                  [ 9x] / [2x + 3]                        9x

________________     =     __________________   =      ___     =    x

2 [ -3x / [2x + 3] ] + 3           [-6x + 6x + 9] / [2x + 3]             9

So....  c  =  -3   Jun 20, 2017