+0  
 
0
22
1
avatar+0 

The line y=3 intersects the graph of y = 4x2+x-1 at the points A and B. The distance between A and B can be written as \(\sqrt{m}/n\), where m and n are positive integers that do not share any factors other than one. Find the value of m-n.

 Jan 30, 2024
 #1
avatar+129881 
+2

Set the equations equal

 

3  = 4x^2 + x  - 1         simplify

 

4x^2 + x - 4  = 0        divide through by 4

 

x^2  - x/4  - 1  = 0

 

x^2 + x/4  =   1                complete the square on x

 

x^2  + x/4  + 1/64  =  1 + 1/64

 

(x + 1/8)^2  = 65/64            take both roots

 

x + 1/8  =  sqrt(65) /  8                       x +  1/8  = -sqrt (65) / 8

 

x =   [ sqrt (65) - 1 ]  / 8                  x =  [-sqrt (65) - 1 ]  / 8

 

A =  ( [-sqrt (65) - 1 ] / 8 , 3 )

B = ([ sqrt (65) - 1 ] / 8 , 3 )

 

The distance between  these points =  2sqrt (65) / 8  =   sqrt (65)  /  4

 

m - n =  65  - 4  =   61

 

 

cool cool cool

 Jan 30, 2024
edited by CPhill  Jan 30, 2024

1 Online Users