Processing math: 100%
 
+0  
 
0
109
2
avatar

Find the coefficient of $u^2 v^9$ in the expansion of $(2u - 3v^3)^5.$

 Jun 7, 2023
 #1
avatar
0

We can use the Binomial Theorem to expand (2u−3v^3)^5 as follows:

(2u3v3)5=(50)(2u)5(3v3)0+(51)(2u)4(3v3)1+(52)(2u)3(3v3)2+(53)(2u)2(3v3)3 +(54)(2u)(3v3)4+(55)(3v3)5 =32u5+120u4v3216u3v6+216u2v990uv12+27v15.The coefficient of u^2v^9 is therefore −216​.

 Jun 7, 2023
 #2
avatar
0

expand   (2u - 3v^3)^5

 

32 u^5 - 240 u^4 v^3 + 720 u^3 v^6 - 1080 u^2 v^9 + 810 u v^12 - 243 v^15

 

Coefficient of u^2 v^9 = - 1080
 

 Jun 7, 2023

1 Online Users