+0  
 
0
1
2
avatar+4 

In triangle $ABC,$ the angle bisector of $\angle BAC$ meets $\overline{BC}$ at $D,$ such that $AD = AB$.

 

Line segment $\overline{AD}$ is extended to $E,$ such that $\angle DBE = \angle BAD$.

 

Show that triangle $ACE$ is isosceles.

 
 Aug 30, 2025
 #1
avatar+142 
+1

Let  angle  BAD  = y  = angle DAC

And since AB = Ad, then angles ABD  and ADB  are equal

So....let angles  ABD, ADB  =  x

 

Since angle ADB is vertical to angle CDE, then  angle  CDE  = x

And since CD  = CE,   then  angle CDE  = angle DEC  =  x

So  triangles ABD  and CDE  are similar by AA congruency

So angle DCE  = y

 

And by the exterior angle theorem, angle ABD  = angle DAC + angle ACD

So

x   = y + angle ACD

x - y   = angle ACD

 

So  angle ACE  =  angle DCE +  angle ACD

So   angle ACE  = y  + (x - y)    =  x

 

So   angle  DEC  = x = angle AEC

And angle ACE  = x

 

So   angle AEC  = angle ACE  means that triangle AEC is isosceles

 Aug 30, 2025

1 Online Users