+0  
 
0
118
2
avatar

1. Given \(m\geq 2\), denote by \(b^{-1}\) the inverse of \(b\pmod{m}\). That is, \(b^{-1}\) is the residue for which \(bb^{-1}\equiv 1\pmod{m}\). Sadie wonders if \((a+b)^{-1}\) is always congruent to \(a^{-1}+b^{-1}\) (modulo $m$). She tries the example a=2, b=3, and m=7. Let L be the residue of \((2+3)^{-1}\pmod{7}\), and let R be the residue of \(2^{-1}+3^{-1}\pmod{7}\), where L and R are integers from 0 to 6 (inclusive). Find L-R.

 May 26, 2020
 #1
avatar
0

https://web2.0calc.com/questions/help_19751

 May 26, 2020
 #2
avatar
0

That's not helpful unfortunately, nobody provided an explanation to that post. 

 May 26, 2020

33 Online Users

avatar
avatar
avatar
avatar
avatar