+0  
 
-1
590
2
avatar+45 

Let \(ABCDEF\) be a convex hexagon. Let \(A', B', C', D', E', F' \) be the centroids of triangles \(FAB, ABC, BCD, CDE, DEF, EFA\), respectively.

 

(a) Show that every pair of opposite sides in hexagon \(A'B'C'D'E'F'\) (namely \(A'B'\) and \(D'E', B'C'\) and \(E'F',\) and \(C'D'\) and \(F'A'\)) are parallel and equal in length.

 

(b) Show that triangles \(A'C'E'\) and \(B'D'F'\) have equal areas.

 

And also, how do I insert an asymptote diagram in my question? Thanks!

 Jul 3, 2020
edited by aDumbDude  Jul 3, 2020
 #1
avatar
0

You should post the asymptote code with the problem!  That keeps it simple.

 Jul 3, 2020

5 Online Users

avatar
avatar
avatar
avatar