#1**+2 **

point D = midpoint of AB = \((\frac{4+2}{2},\frac{6+-2}{2})\,=\,(\frac62,\frac42)\,=\,(3,2)\)

point E = midpoint of AC = \((\frac{4+-2}{2},\frac{6+-4}{2})\,=\,(\frac22,\frac22)\,=\,(1,1)\)

slope of DE = \(\frac{2-1}{3-1}\,=\,\frac12\)

slope of BC = \(\frac{-2--4}{2--2}\,=\,\frac24\,=\,\frac12\)

slope of DE = slope of BC

therefore DE is parallel to BC .

hectictar
Mar 22, 2018

#1**+2 **

Best Answer

point D = midpoint of AB = \((\frac{4+2}{2},\frac{6+-2}{2})\,=\,(\frac62,\frac42)\,=\,(3,2)\)

point E = midpoint of AC = \((\frac{4+-2}{2},\frac{6+-4}{2})\,=\,(\frac22,\frac22)\,=\,(1,1)\)

slope of DE = \(\frac{2-1}{3-1}\,=\,\frac12\)

slope of BC = \(\frac{-2--4}{2--2}\,=\,\frac24\,=\,\frac12\)

slope of DE = slope of BC

therefore DE is parallel to BC .

hectictar
Mar 22, 2018