+0  
 
+2
12558
12
avatar+1314 

1.  What is the coefficient of    $ab^2c^3$ in     $(a + 2b + 3c)^6$?

 

2. Use the Binomial Theorem to write $(3+\sqrt{5})^4$ in the form $a + b\sqrt{5}$ for some positive integers a and b.

 

3.Find the constant term in the expansion of \[\Big(z - \frac{2}{\sqrt{z}}\Big)^9.\]

 

4a.Expand $\left(x^2+\frac{1}{x}\right)^3$. (Write the terms with higher degree first, so for example an x^2 term would come before x or 1/x.)

 

4b. Find the constant term in the expansion of $\Big(x^2+\frac{1}{x}\Big)^4$.

 

5a. For what positive integers n does $\left(x^2+\frac{1}{x}\right)^n$ have a nonzero constant term?

5b. For the values of n that you found in part (a), what is that constant term? (You can leave your answer in the form of a combination.)

 May 4, 2016
 #1
avatar+129899 
+4

Here's the answer  to (1)

 

http://web2.0calc.com/questions/what-is-the-coefficient-of-nbsp-nbsp-in-nbsp_2

 

 

cool cool cool

 May 4, 2016
 #2
avatar+129899 
+5

2. Use the Binomial Theorem to write $(3+sqrt{5})^4$ in the form $a + bsqrt{5}$ for some positive integers a and b.

 

(3 + sqrt(5) ) ^4   =

 

3^4   +  (4)(3)^3 * sqrt(5)  + (6)(3)^2* [sqrt(5)]^2  +  (4)(3)(sqrt(5))^3  +  (sqrt(5))^4   = 

 

81  + 108sqrt (5)    +  54 *5   +  60sqrt(5)   +  25  =

 

81  +  54 *5  + 25 + 108sqrt(5)  + 60sqrt(5)  =

 

81  +  270  + 25   + 168sqrt(5)  =

 

376  + 168sqrt(5)

 

 

 

cool cool cool

 May 4, 2016
 #3
avatar+129899 
+2

3.Find the constant term in the expansion of \[\Big(z - \frac{2}{\sqrt{z}}\Big)^9.\]

 

[ z  - 2/sqrt(z)]^ 9

 

The constant term  occurs   at    C(9,6) (z)^3 [2/ sqrt(z)]^6   =  84 z^3 [ 64/ z^3]  =

 

84 * 64   =

 

5376

 

 

cool cool cool

 May 4, 2016
 #4
avatar+129899 
+4

4a.Expand $\left(x^2+\frac{1}{x}\right)^3$. (Write the terms with higher degree first, so for example an x^2 term would come before x or 1/x.)

 

[ x^2  +  1/x] ^3   =

 

(x^2)^3  +  (3)(x^2)^2 (1/x)  + (3)(x^2)(1/x)^2   + (1/x)^3   =

 

x^6   +  3x^3   + 3    + (1/x)^3  =

 

x^6  + 3x^3  + (1/x)^3  + 3

 

 

 

4b. Find the constant term in the expansion of \($\Big(x^2+\frac{1}{x}\Big)^4$\)

 

There is no constant term  in this expansion.......

 

 

cool cool cool

 May 4, 2016
 #5
avatar+129899 
+3

5a. For what positive integers n does $\(\left(x^2+\frac{1}{x}\right)^n\)$ have a nonzero constant term ??

 

This will occur  when n  = 3p   for p ≥ 1

 

 

5b. For the values of n that you found in part (a), what is that constant term?

 

The term that will procuce a constant  is given by :   C(3p,2p)(x^2)^p*(1/x)^(2p) 

 

 

cool cool cool

 May 4, 2016
 #6
avatar
0

Could you explain how you got the formula for the constant term?

 May 14, 2016
 #7
avatar
0

Could you explain questions 5a and 5b please?

 May 21, 2016
 #8
avatar
0

Yes, CPhill could you please explaing how you go it?

 May 24, 2016
 #9
avatar
0

Why did you use a p for 5a explanation?

Can it be any variable?

 Jun 4, 2016
 #10
avatar
+1

aops much

 Sep 10, 2016
 #11
avatar
+3

The constant term in 5b is 0.

 Oct 21, 2016
 #12
avatar
+2

The constant term in 5b is 0.

 Oct 21, 2016

2 Online Users

avatar
avatar