+0

# i wonder what the answer is !

0
177
1

Solve the following equation for x

6(y+1) = 7(x-2)

Thankyi

May 15, 2019

#1
+8853
+3

$$6(y + 1) \,=\, 7(x - 2)$$

Divide both sides of the equation by  7 .

$$\frac67(y + 1)\, =\, x - 2$$

Add  2  to both sides of the equation.

$$\frac67(y + 1)+2\, =\, x$$

We could stop here, but let's simplify it.

$$x\,=\,\frac67(y + 1)+2$$

Distribute  $$\frac67$$  to the terms in parenthesees.

$$x\,=\,\frac67y + \frac67+2$$

Add  $$\frac67+2$$

$$x\,=\,\frac67y + \frac67+\frac{14}{7}\\~\\ x\,=\,\frac67y + \frac{20}{7}$$

.
May 15, 2019

#1
+8853
+3

$$6(y + 1) \,=\, 7(x - 2)$$

Divide both sides of the equation by  7 .

$$\frac67(y + 1)\, =\, x - 2$$

Add  2  to both sides of the equation.

$$\frac67(y + 1)+2\, =\, x$$

We could stop here, but let's simplify it.

$$x\,=\,\frac67(y + 1)+2$$

Distribute  $$\frac67$$  to the terms in parenthesees.

$$x\,=\,\frac67y + \frac67+2$$

Add  $$\frac67+2$$

$$x\,=\,\frac67y + \frac67+\frac{14}{7}\\~\\ x\,=\,\frac67y + \frac{20}{7}$$

hectictar May 15, 2019