+0  
 
0
323
2
avatar

two vertices of right triangle ABC are A(-2,6) and C(7,3). If the right angle is at vertex A and vertex B is on the x-axis, identify the coordinates of point B

Guest Aug 3, 2017
 #1
avatar+19645 
+1

two vertices of right triangle ABC are A(-2,6) and C(7,3).

If the right angle is at vertex A and vertex B is on the x-axis,

identify the coordinates of point B

 

Let \(\vec{A} = \binom{-2}{6}\)
Let \(\vec{B} = \binom{x}{0}\)
Let \(\vec{C} = \binom{7}{3}\)

 

\(\begin{array}{rcll} \vec{AC} = \ ? \\ \vec{AC} &=& \vec{C} - \vec{A} \\ \vec{AC} &=& \binom{7}{3} - \binom{-2}{6} \\ \vec{AC} &=& \binom{7+2}{3-6} \\ \vec{AC} &=& \binom{9}{-3} \\ \end{array}\)

\(\begin{array}{rcll} \vec{AB} = \ ? \\ \vec{AB} &=& \vec{B} - \vec{A} \\ \vec{AB} &=& \binom{x}{0} - \binom{-2}{6} \\ \vec{AB} &=& \binom{x+2}{-6} \\ \end{array}\)

 

\(\triangle ABC\) is a right triangle then \(\vec{AC}\cdot \vec{AB} = 0\)

\(\begin{array}{rcll} \mathbf{ \vec{AC}\cdot \vec{AB} } & \mathbf{=} & \mathbf{0} \\ \binom{9}{-3} \cdot \binom{x+2}{-6} &=& 0 \\ 9\cdot(x+2) + (-3)\cdot (-6) &=& 0 \\ 9x+18+18 &=& 0 \\ 9x+ 36 &=& 0 \quad & \quad :9 \\ x+ 4 &=& 0 \\ \mathbf{x} & \mathbf{=} & \mathbf{-4} \\ \end{array} \)

 

\(\mathbf{\vec{B} = \binom{-4}{0} } \)

 

laugh

heureka  Aug 3, 2017
 #2
avatar+87301 
+1

 

Here's another way without using vectors.....let B  = (x, 0)

 

If the right angle is at A.....the hypotenuse is BC....and this distance  is  just  

sqrt [ (7 - x)^2 + (3 - 0)^2 ] =

sqrt [ 49 - 14x + x^2 + 9 ]   =  sqt [ 58 - 14x + x^2 ]

 

And AB  forms one of the legs...and its length is just    sqrt [ (-2 - x)^2 + (6 -0)^2 ] =  

sqrt [ ( 4 + 4x + x^2 + 36 ] =

sqrt [ 40 + 4x + x^2 ]

 

And AC  is the other leg....and its  length is just  sqrt [ (-2 - 7)^2 + (6 -3)^2 ] =

sqrt [ 81 + 9 ]  = sqrt [90]

 

And by the Pytahgorean Theorem.........AB^2 + AC^2  = BC^2   ....so...

 

[ 40 + 4x + x^2 ]  +  90    =  [ 58 - 14x + x^2 ]   simplify

 

130 + 4x  =  58 - 14x          subtract 4x, 58 from both sides

 

72 = -18x             divide both sides by -18

 

-4  = x       so ....B  = (-4, 0)

 

Obviously.....vectors make the process easier.....!!!!

 

 

cool cool cool

CPhill  Aug 4, 2017

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.