I got this by canceling out with a conjugate,
i
Remember that sec(t) = 1/cos(t) so multiply numerator and denominator by cos(t), and note that tan(t) = sin(t)/cos(t) and that 1 - cos(t)^2 = sin(t)^2:
tantsect−cost→tant×cost1−cos2t→sintsin2t→1sint→csct
.
identity
Formula:
sec(t)=1cos(t)tan(t)=sin(t)cos(t)csc(t)=1sin(t)sin2(t)=1−cos2(t)
tan(t)sec(t)−cos(t)=sin(t)cos(t)1cos(t)−cos(t)=sin(t)cos(t)⋅(11cos(t)−cos(t))=sin(t)cos(t)cos(t)−cos(t)cos(t)=sin(t)1−cos2(t)=sin(t)sin2(t)=1sin(t)=csc(t)