tan^2(x) / [ sec(x) + 1] = sec(x) - 1
[sec^2(x) - 1] / [ sec(x) + 1 ] = sec(x) - 1
[(sec(x) + 1) (sec(x) - 1)] / [sec(x) + 1] = sec(x) - 1
sec(x) - 1 = sec(x) - 1
[cotx -1] / [1 - tanx] = cscx / secx
[(cotx -1) (1 + tanx)] / [ (1- tanx) (1 + tanx)] = (1/sinx) / (1 / cosx)
[cotx - 1 +cotx*tanx - tanx] / [ (1- tanx) (1 + tanx)] = (1/sinx)* (cosx)/1
[cotx - 1 + 1 - tanx] / [ (1 - tanx)(1 + tanx)] = cosx / sinx
[ cotx - tanx] / [ 1 - tan^2 x] = cot x
[ cosx/sinx - sinx/cosx] / [ 1 - tan^2x] = cot x
[( cos^2x - sin^2x) / sinxcosx] / [ 1 - sin^2x/cos^2x] = cot x
[( cos^2x - sin^2x) / sinxcosx] / [ (cos^2x - sin^2x) / cos^2x] = cot x
[ 1 / sinxcosx] / [ 1 / cos^2x] = cot x
[ 1 / sinxcosx[ * [ cos^2x] = cotx
cos^2x / [ sinxcosx] = cot x
cosx / sinx = cot x
cot x = cot x