+0  
 
0
1747
2
avatar+466 

(tan2 x)/(sec x + 1) = sec x - 1

 Mar 29, 2016
 #1
avatar+466 
0

Also this one: (cot x -1)/(1 - tan x) = csc x/sec x

 Mar 29, 2016
 #2
avatar+129852 
+5

tan^2(x) / [ sec(x) + 1]  =   sec(x) - 1

 

[sec^2(x) - 1] / [ sec(x) + 1 ]       =    sec(x) - 1

 

[(sec(x) + 1) (sec(x) - 1)] /  [sec(x) + 1]  =       sec(x) - 1

 

sec(x) - 1      =   sec(x) - 1

 

 

 

[cotx -1] / [1 - tanx]    =  cscx / secx

 

[(cotx -1) (1 + tanx)] /  [ (1- tanx) (1 + tanx)]      =    (1/sinx) / (1 / cosx)

 

[cotx - 1 +cotx*tanx - tanx] / [ (1- tanx) (1 + tanx)]   =  (1/sinx)* (cosx)/1

 

[cotx - 1 + 1 - tanx] / [ (1 - tanx)(1 + tanx)]   =      cosx / sinx

 

[ cotx - tanx] / [ 1 - tan^2 x]       =     cot x

 

[ cosx/sinx - sinx/cosx]  /  [ 1 - tan^2x]     = cot x

 

[( cos^2x - sin^2x) / sinxcosx] / [ 1 - sin^2x/cos^2x]    = cot x

 

[( cos^2x - sin^2x) / sinxcosx] / [  (cos^2x - sin^2x) / cos^2x]   = cot x

 

[ 1 / sinxcosx] /  [ 1 / cos^2x]    = cot x

 

[  1 / sinxcosx[ * [ cos^2x]   = cotx

 

cos^2x / [ sinxcosx]    = cot x

 

cosx / sinx    = cot x

 

cot x      = cot x

 

 

cool cool cool

 Mar 29, 2016

2 Online Users