+0  
 
0
787
2
avatar+466 

(sec x - tan x)2 = (1 - sin x)/(1 + sin x)

 May 5, 2016
 #1
avatar
0

8       its 8

 May 5, 2016
 #2
avatar
0

Verify the following identity:

(sec(x)-tan(x))^2 = (1-sin(x))/(1+sin(x))

Multiply both sides by 1+sin(x):

(1+sin(x)) (sec(x)-tan(x))^2 = ^?1-sin(x)

Write secant as 1/cosine and tangent as sine/cosine:

(1+sin(x)) (1/(cos(x))-(sin(x))/(cos(x)))^2 = ^?1-sin(x)

Put 1/(cos(x))-(sin(x))/(cos(x)) over the common denominator cos(x): 1/(cos(x))-(sin(x))/(cos(x)) = (1-sin(x))/(cos(x)):

(1-sin(x))/(cos(x))^2 (1+sin(x)) = ^?1-sin(x)

Multiply each exponent in (1-sin(x))/(cos(x)) by 2:

((1-sin(x))^2)/(cos(x)^2) (1+sin(x)) = ^?1-sin(x)

Multiply both sides by cos(x)^2:

(1-sin(x))^2 (1+sin(x)) = ^?cos(x)^2 (1-sin(x))

(1-sin(x)) cos(x)^2 = cos(x)^2-cos(x)^2 sin(x):

(1-sin(x))^2 (1+sin(x)) = ^?cos(x)^2-cos(x)^2 sin(x)

Divide both sides by sin(x)-1:

(sin(x)-1) (1+sin(x)) = ^?-cos(x)^2

(sin(x)-1) (1+sin(x)) = sin(x)^2-1:

sin(x)^2-1 = ^?-cos(x)^2

sin(x)^2 = 1-cos(x)^2:

1-cos(x)^2-1 = ^?-cos(x)^2

-1+1-cos(x)^2 = -cos(x)^2:

-cos(x)^2 = ^?-cos(x)^2

The left hand side and right hand side are identical:

Answer: | (identity has been verified)

 May 5, 2016

4 Online Users

avatar
avatar