We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1171
2
avatar

If 3n + 1 is a perfect square, show that n + 1 is the sum of three perfect squares.

 Nov 27, 2015

Best Answer 

 #1
avatar+23301 
+35

If 3n + 1 is a perfect square, show that n + 1 is the sum of three perfect squares.

 

3n + 1 is a perfect square:

\(\small{ \begin{array}{rcl} 3n+1 &=& a^2 \\ 3n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{3}\\ \hline n+1 &=& \frac{a^2-1}{3} +1 \\ n+1 &=& \frac{a^2-1+3}{3}\\ n+1 &=& \frac{a^2+2}{3}\\ \end{array} }\)

 

Because \(\frac{a^2+2}{3}\) is a integer then \(a^2+2\) is divisible by 3, then \(a^2\) is not divisible by 3  and also \(a\) is not divisible by 3,

because if 3 is not a prime factor in \(a^2\) a perfect spuare, then 3 is not a prime factor in  \(a\)

 

Two numbers are not divisible by 3. It is  \(3b +1\) and \(3b + 2\)

 

1. We substitute \(a = 3b+1\)

\(\small{ \begin{array}{rcl} n+1 &=& \frac{a^2+2}{3}\qquad \text{substitute }\ a = 3b+1\\ n+1 &=& \frac{(3b+1)^2+2}{3} \\ n+1 &=& \frac{9b^2+6b+1+2}{3} \\ n+1 &=& \frac{9b^2+6b+3}{3} \\ n+1 &=& 3b^2+2b+1 \\ n+1 &=& b^2 + b^2 + b^2 +2b+1 \\ n+1 &=& b^2 + b^2 + (b+1)^2\\ \end{array} }\)

 

So n + 1 is the sum of three perfect squares and \(b = \frac{a-1}{3}\).

 

2. We substitute \(a = 3b+2\)

\(\small{ \begin{array}{rcl} n+1 &=& \frac{a^2+2}{3}\qquad \text{substitute }\ a = 3b+2\\ n+1 &=& \frac{(3b+2)^2+2}{3} \\ n+1 &=& \frac{9b^2+12b+4+2}{3} \\ n+1 &=& \frac{9b^2+12b+6}{3} \\ n+1 &=& 3b^2+4b+2 \\ n+1 &=& b^2 + b^2 + b^2 +2b+2b+1+1 \\ n+1 &=& b^2 + b^2+2b+1 + b^2 +2b+1 \\ n+1 &=& b^2 +(b+1)^2+(b+1)^2\\ \end{array} }\)

 

So n + 1 is the sum of three perfect squares and \(b = \frac{a-2}{3}\).

 

Example 1:

\(\small{ \begin{array}{rcl} a &=&7 \\ 3n+1 =a^2&=& 7^2 \qquad \rightarrow \qquad n=\frac{a^2-1}{3}=\frac{49-1}{3} = 16\\\\ n+1 &=& 16+1=17 \\ 17 &=& b^2+b^2+(b+1)^2 \qquad a=3b+1 \qquad \rightarrow b = \frac{a-1}{3} = \frac{7-1}{3} = 2\\ 17 &=& 2^2+2^2+3^2 = 4+4+9\\ \end{array} }\)

 

Example 2:

\(\small{ \begin{array}{rcl} a &=&8 \\ 3n+1 =a^2&=& 8^2 \qquad \rightarrow \qquad n=\frac{a^2-1}{3}=\frac{64-1}{3} = 21\\\\ n+1 &=& 21+1=22 \\ 22 &=& b^2+(b+1)^2+(b+1)^2 \qquad a=3b+2 \qquad \rightarrow b = \frac{a-2}{3} = \frac{8-2}{3} = 2\\ 22 &=& 2^2+3^2+3^2 = 4+9+9\\ \end{array} }\)

 

 

laugh

 Nov 27, 2015
edited by heureka  Nov 27, 2015
edited by heureka  Nov 27, 2015
 #1
avatar+23301 
+35
Best Answer

If 3n + 1 is a perfect square, show that n + 1 is the sum of three perfect squares.

 

3n + 1 is a perfect square:

\(\small{ \begin{array}{rcl} 3n+1 &=& a^2 \\ 3n &=& a^2 - 1 \\ n &=& \frac{a^2-1}{3}\\ \hline n+1 &=& \frac{a^2-1}{3} +1 \\ n+1 &=& \frac{a^2-1+3}{3}\\ n+1 &=& \frac{a^2+2}{3}\\ \end{array} }\)

 

Because \(\frac{a^2+2}{3}\) is a integer then \(a^2+2\) is divisible by 3, then \(a^2\) is not divisible by 3  and also \(a\) is not divisible by 3,

because if 3 is not a prime factor in \(a^2\) a perfect spuare, then 3 is not a prime factor in  \(a\)

 

Two numbers are not divisible by 3. It is  \(3b +1\) and \(3b + 2\)

 

1. We substitute \(a = 3b+1\)

\(\small{ \begin{array}{rcl} n+1 &=& \frac{a^2+2}{3}\qquad \text{substitute }\ a = 3b+1\\ n+1 &=& \frac{(3b+1)^2+2}{3} \\ n+1 &=& \frac{9b^2+6b+1+2}{3} \\ n+1 &=& \frac{9b^2+6b+3}{3} \\ n+1 &=& 3b^2+2b+1 \\ n+1 &=& b^2 + b^2 + b^2 +2b+1 \\ n+1 &=& b^2 + b^2 + (b+1)^2\\ \end{array} }\)

 

So n + 1 is the sum of three perfect squares and \(b = \frac{a-1}{3}\).

 

2. We substitute \(a = 3b+2\)

\(\small{ \begin{array}{rcl} n+1 &=& \frac{a^2+2}{3}\qquad \text{substitute }\ a = 3b+2\\ n+1 &=& \frac{(3b+2)^2+2}{3} \\ n+1 &=& \frac{9b^2+12b+4+2}{3} \\ n+1 &=& \frac{9b^2+12b+6}{3} \\ n+1 &=& 3b^2+4b+2 \\ n+1 &=& b^2 + b^2 + b^2 +2b+2b+1+1 \\ n+1 &=& b^2 + b^2+2b+1 + b^2 +2b+1 \\ n+1 &=& b^2 +(b+1)^2+(b+1)^2\\ \end{array} }\)

 

So n + 1 is the sum of three perfect squares and \(b = \frac{a-2}{3}\).

 

Example 1:

\(\small{ \begin{array}{rcl} a &=&7 \\ 3n+1 =a^2&=& 7^2 \qquad \rightarrow \qquad n=\frac{a^2-1}{3}=\frac{49-1}{3} = 16\\\\ n+1 &=& 16+1=17 \\ 17 &=& b^2+b^2+(b+1)^2 \qquad a=3b+1 \qquad \rightarrow b = \frac{a-1}{3} = \frac{7-1}{3} = 2\\ 17 &=& 2^2+2^2+3^2 = 4+4+9\\ \end{array} }\)

 

Example 2:

\(\small{ \begin{array}{rcl} a &=&8 \\ 3n+1 =a^2&=& 8^2 \qquad \rightarrow \qquad n=\frac{a^2-1}{3}=\frac{64-1}{3} = 21\\\\ n+1 &=& 21+1=22 \\ 22 &=& b^2+(b+1)^2+(b+1)^2 \qquad a=3b+2 \qquad \rightarrow b = \frac{a-2}{3} = \frac{8-2}{3} = 2\\ 22 &=& 2^2+3^2+3^2 = 4+9+9\\ \end{array} }\)

 

 

laugh

heureka Nov 27, 2015
edited by heureka  Nov 27, 2015
edited by heureka  Nov 27, 2015
 #2
avatar+104793 
+5

Very nice, heureka.......!!!!

 

 

cool cool cool

 Nov 27, 2015

11 Online Users