If a,b,c,d are in G.P ,then prove that-
(i) (a-b)^2 , (b-c)^2 , (c-d)^2 are in G.P
(ii) a^2+b^2 , b^2+c^2 , c^2+d^2 are in G.P
(iii) a^2+b^2+c^2, ab+bc+cd , b^2+c^2+d^2 are in G.P
(iv) (b-c)^2+(c-a)^2+(d-b)^2= (a-d)^2 are in G.P
Hi AaratikRoy :)
If a,b,c,d are in G.P ,then prove that-
(i) (a-b)^2 , (b-c)^2 , (c-d)^2 are in G.P
If a, b, c, d are in GP then there there is a real number r such that
\(a\\ b=ar\\ c=ar^2\\ d=ar^3\\\)
also
\(\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\\ so\\ b^2=ac\qquad c^2=bd\)
Now I will look at the sequence in question (i)
(i) (a-b)^2 , (b-c)^2 , (c-d)^2 are in G.P
This sequence is a GP if it can be shown that
\(\frac{(b-c)^2}{(a-b)^2}=\frac{(c-d)^2}{(b-c)^2}\\ LHS=\frac{b^2+c^2-2bc}{a^2+b^2-2ab}\\ LHS=\frac{ac+c^2-2bc}{a^2+ac-2ab}\\ LHS=\frac{c(a+c-2b)}{a(a+c-2b)}\\ LHS=\frac{c}{a}\\ LHS=\frac{ar^2}{a}\\ LHS=r^2\\\)
\(RHS=\frac{(c-d)^2}{(b-c)^2}\\ RHS=\frac{(c^2+d^2-2cd)}{(b^2+c^2-2bc)}\\ RHS=\frac{(bd+d^2-2cd)}{(b^2+db-2bc)}\\ RHS=\frac{d(b+d-2c)}{b(b+d-2c)}\\ RHS=\frac{d}{b}\\ RHS=\frac{ar^3}{ar}\\ RHS=r^2\\ RHS=LHS\\ \therefore\\ \mbox{The terms in question (i) make a GP}\)
Here are answers to the first three. Let's see if you can make use of these to do part (iv) yourself:
.
(iv) (b-c)^2+(c-a)^2+(d-b)^2= (a-d)^2
I think you just want to show that this is true........???
a
b = ar
c = ar^2
d = ar^3
So
(b - c)^2 = (ar - ar^2)^2 = [ar (1 - r)]^2 = (ar)^2 (1 - r)^2 = (ar)^2 (1 - r)^2
(c - a)^2 = (ar^2 - a)^2 = [ a (r^2 - 1)]^2 = (a)^2 (r + 1)^2 (1 - r)^2
(d - b)^2 = ( ar^3 - ar)^2 = [ ar ( r^2 -1)]^2 = (ar)^2 (r + 1)^2 (1 - r)^2
(a - d)^2 = (a - ar^3)^2 = [ a (1 - r^3)]^2 = (a)^2 (1 - r)^2 ( 1 + r + r^2)^2
So
(b-c)^2+(c-a)^2+(d-b)^2= (a-d)^2
(ar)^2 (1 - r)^2 + (a)^2 (r + 1)^2 (1 - r)^2 + (ar)^2 (r + 1)^2 (1 - r)^2 = (a)^2 (1 - r)^2 ( 1 + r + r^2)^2
Divide through by a(1 - r)^2
r^2 + (r + 1)^2 + r^2 (1 + r)^2 = ( 1 + r + r^2) ^2
r^2 + [ r^2 + 2r + 1] + r^2 ( r^2 + 2r + 1) =
2r^2 + 2r + 1 + r^4 + 2r^3 + r^2 =
r^4 + 2r^3 + 3r^2 + 2r + 1 =
This factors as :
( 1 + r + r^2)^2
And this = the RHS