+0  
 
+1
180
1
avatar+393 

If \(f(x)=ax+b\) and \(f^{-1}(x)=bx+a\) with \(a\) and \(b\) real, what is the value of \(a+b\)?

ant101  Dec 29, 2017

Best Answer 

 #1
avatar+6913 
+1

f(x) = ax + b

x = a*f^-1(x) + b

f^-1(x) = (1/a) * x - b/a

so you get 1/a = b, -b/a = a

because -b/a = a, b = -a^2

Only solution is a = -1, b = -1.

so a + b = -2.

MaxWong  Dec 29, 2017
Sort: 

1+0 Answers

 #1
avatar+6913 
+1
Best Answer

f(x) = ax + b

x = a*f^-1(x) + b

f^-1(x) = (1/a) * x - b/a

so you get 1/a = b, -b/a = a

because -b/a = a, b = -a^2

Only solution is a = -1, b = -1.

so a + b = -2.

MaxWong  Dec 29, 2017

29 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details