+0  
 
+1
394
1
avatar+836 

If \(f(x)=ax+b\) and \(f^{-1}(x)=bx+a\) with \(a\) and \(b\) real, what is the value of \(a+b\)?

 Dec 29, 2017

Best Answer 

 #1
avatar+7076 
+1

f(x) = ax + b

x = a*f^-1(x) + b

f^-1(x) = (1/a) * x - b/a

so you get 1/a = b, -b/a = a

because -b/a = a, b = -a^2

Only solution is a = -1, b = -1.

so a + b = -2.

 Dec 29, 2017
 #1
avatar+7076 
+1
Best Answer

f(x) = ax + b

x = a*f^-1(x) + b

f^-1(x) = (1/a) * x - b/a

so you get 1/a = b, -b/a = a

because -b/a = a, b = -a^2

Only solution is a = -1, b = -1.

so a + b = -2.

MaxWong Dec 29, 2017

8 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.