If c = 2*10^6 and y = 2*10^5
w^2 = c*y/c-y
Work out the value of w. Give your answer in standard form.
If c = 2*10^6 and y = 2*10^5
w^2 = c*y/c-y
Work out the value of w. Give your answer in standard form.
w^2 =[2*10^6] x [2*10^5] / [2*10^6 - 2*10^5]
w^2 =[4*10^11] / [1.8*10^6]
w^2 =222,222.22......
w = sqrt(222,222.22...)
w ~ =+,- 1,000sqrt(2)/3 =+,- 471.40....
If w = \(c\cdot\frac{y}{c}-y\) , then this is how to do it.
c = 2 · 106
y = 2 · 105
\(w^2\,=\,c\cdot\frac{y}{c}-y\) Plug in the given values for c and y .
\(w^2\,=\,2\cdot10^6\cdot\frac{2\cdot10^5}{2\cdot10^6}-2\cdot10^5 \\ w^2\,=\, 2\cdot10^6\cdot\frac{10^5}{10^6}-2\cdot10^5 \\ w^2 \,=\, 2\cdot10^6\cdot\frac{1}{10}-2\cdot10^5 \\ w^2 \,=\, 2\cdot10^5-2\cdot10^5 \\ w^2\,=\,0\\w\,\ \,=\,0\) Reduce the fraction by 2 .
Or....if \(w^2\,=\,\frac{c\cdot y}{c-y} \) , then this is how to do it.
\(w^2\,=\,\frac{2\cdot10^6\cdot2\cdot10^5}{2\cdot10^6-2\cdot10^5} \,=\, \frac{4\cdot10^{11}}{20\cdot10^5-2\cdot10^5} \,=\,\frac{4\cdot10^{11}}{18\cdot10^5}\,=\,\frac{2\cdot10^6}{9}\\~\\ w\,=\,\pm\sqrt{\frac{2\cdot10^6}{9}}\,=\,\pm\frac{10^3\sqrt2}{3}\,=\,\pm\frac{1000\sqrt2}{3}\)
The second one is the same answer as Guest's.