+0

# If c = 2*10^6 and y = 2*10^5

0
142
3

If c = 2*10^6 and y = 2*10^5

w^2 = c*y/c-y

Work out the value of w. Give your answer in standard form.

Guest Oct 1, 2017
Sort:

#1
+1

If c = 2*10^6 and y = 2*10^5
w^2 = c*y/c-y
Work out the value of w. Give your answer in standard form.

w^2 =[2*10^6] x [2*10^5] / [2*10^6  -  2*10^5]

w^2 =[4*10^11] / [1.8*10^6]

w^2 =222,222.22......

w = sqrt(222,222.22...)

w ~ =+,- 1,000sqrt(2)/3 =+,- 471.40....

Guest Oct 1, 2017
#2
0

Thank you!!!

Guest Oct 1, 2017
#3
+6564
+1

If     w  =  $$c\cdot\frac{y}{c}-y$$     , then this is how to do it.

c  =  2 · 106

y  =  2 · 105

$$w^2\,=\,c\cdot\frac{y}{c}-y$$                                      Plug in the given values for  c  and  y .

$$w^2\,=\,2\cdot10^6\cdot\frac{2\cdot10^5}{2\cdot10^6}-2\cdot10^5 \\ w^2\,=\, 2\cdot10^6\cdot\frac{10^5}{10^6}-2\cdot10^5 \\ w^2 \,=\, 2\cdot10^6\cdot\frac{1}{10}-2\cdot10^5 \\ w^2 \,=\, 2\cdot10^5-2\cdot10^5 \\ w^2\,=\,0\\w\,\ \,=\,0$$              Reduce the fraction by  2 .

Or....if     $$w^2\,=\,\frac{c\cdot y}{c-y}$$     , then this is how to do it.

$$w^2\,=\,\frac{2\cdot10^6\cdot2\cdot10^5}{2\cdot10^6-2\cdot10^5} \,=\, \frac{4\cdot10^{11}}{20\cdot10^5-2\cdot10^5} \,=\,\frac{4\cdot10^{11}}{18\cdot10^5}\,=\,\frac{2\cdot10^6}{9}\\~\\ w\,=\,\pm\sqrt{\frac{2\cdot10^6}{9}}\,=\,\pm\frac{10^3\sqrt2}{3}\,=\,\pm\frac{1000\sqrt2}{3}$$

The second one is the same answer as Guest's.

hectictar  Oct 1, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details