+0  
 
0
186
3
avatar

If c = 2*10^6 and y = 2*10^5

w^2 = c*y/c-y

Work out the value of w. Give your answer in standard form. 

Guest Oct 1, 2017
Sort: 

3+0 Answers

 #1
avatar
+1

If c = 2*10^6 and y = 2*10^5 
w^2 = c*y/c-y 
Work out the value of w. Give your answer in standard form.

 

w^2 =[2*10^6] x [2*10^5] / [2*10^6  -  2*10^5]

w^2 =[4*10^11] / [1.8*10^6]

w^2 =222,222.22......

w = sqrt(222,222.22...)

w ~ =+,- 1,000sqrt(2)/3 =+,- 471.40....

Guest Oct 1, 2017
 #2
avatar
0

Thank you!!!

Guest Oct 1, 2017
 #3
avatar+7056 
+1

If     w  =  \(c\cdot\frac{y}{c}-y\)     , then this is how to do it.

 

c  =  2 · 106

y  =  2 · 105

 

\(w^2\,=\,c\cdot\frac{y}{c}-y\)                                      Plug in the given values for  c  and  y .

 

\(w^2\,=\,2\cdot10^6\cdot\frac{2\cdot10^5}{2\cdot10^6}-2\cdot10^5 \\ w^2\,=\, 2\cdot10^6\cdot\frac{10^5}{10^6}-2\cdot10^5 \\ w^2  \,=\,   2\cdot10^6\cdot\frac{1}{10}-2\cdot10^5 \\ w^2  \,=\,   2\cdot10^5-2\cdot10^5 \\ w^2\,=\,0\\w\,\ \,=\,0\)              Reduce the fraction by  2 .

 

 

 

Or....if     \(w^2\,=\,\frac{c\cdot y}{c-y} \)     , then this is how to do it.

 

\(w^2\,=\,\frac{2\cdot10^6\cdot2\cdot10^5}{2\cdot10^6-2\cdot10^5} \,=\, \frac{4\cdot10^{11}}{20\cdot10^5-2\cdot10^5} \,=\,\frac{4\cdot10^{11}}{18\cdot10^5}\,=\,\frac{2\cdot10^6}{9}\\~\\ w\,=\,\pm\sqrt{\frac{2\cdot10^6}{9}}\,=\,\pm\frac{10^3\sqrt2}{3}\,=\,\pm\frac{1000\sqrt2}{3}\)

 

The second one is the same answer as Guest's. smiley

hectictar  Oct 1, 2017

15 Online Users

avatar

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.