+0  
 
+5
789
1
avatar+9 
If f(θ) = 2 sinθ - sin θ/2, find f(π/3)
math trigonometry
 Aug 25, 2014

Best Answer 

 #1
avatar+26400 
+10

 f(θ) = 2 sinθ - sin θ/2    $$f(\dfrac{\pi}{3}) \quad ? \qquad \Theta = \dfrac{\pi}{3}$$

$$\sin{ \Theta } = \sin{ \dfrac{\pi}{3} }
= \dfrac {1}{2}\sqrt{3}$$

$$\sin{
\dfrac{\Theta}{2}
}
= \sin{
\left(
\dfrac{\pi}{3}*\dfrac{1}{2}
\right)
}
= \sin{
\dfrac{\pi}{6} }
= \dfrac {1}{2}$$

$$f(\dfrac{\pi}{3}) =
2*\dfrac {1}{2}\sqrt{3}
-\dfrac {1}{2}$$

$$f(\dfrac{\pi}{3}) =
\sqrt{3}-\dfrac {1}{2}
=1.2320508075688773$$

 Aug 25, 2014
 #1
avatar+26400 
+10
Best Answer

 f(θ) = 2 sinθ - sin θ/2    $$f(\dfrac{\pi}{3}) \quad ? \qquad \Theta = \dfrac{\pi}{3}$$

$$\sin{ \Theta } = \sin{ \dfrac{\pi}{3} }
= \dfrac {1}{2}\sqrt{3}$$

$$\sin{
\dfrac{\Theta}{2}
}
= \sin{
\left(
\dfrac{\pi}{3}*\dfrac{1}{2}
\right)
}
= \sin{
\dfrac{\pi}{6} }
= \dfrac {1}{2}$$

$$f(\dfrac{\pi}{3}) =
2*\dfrac {1}{2}\sqrt{3}
-\dfrac {1}{2}$$

$$f(\dfrac{\pi}{3}) =
\sqrt{3}-\dfrac {1}{2}
=1.2320508075688773$$

heureka Aug 25, 2014

0 Online Users