+0  
 
0
342
2
avatar

If f ' (x) = 24x^2 + 6sec(x)tan(x) and f(0) = 3 then what is f(pi) = ?

Guest Mar 30, 2015

Best Answer 

 #1
avatar+85958 
+10

If  f ' (x) = 24x^2 + 6sec(x)tan(x), then

f(x) = 8x^3 + 6sec(x) + C

And 

f(0)= 3   ....so

f(0) = 8(0)^3 + 6sec(0) + C  = 3

6 + C =  3

Then C = -3

So

f(pi)  =

8(pi)^3 + 6sec(pi) - 3 =

8(pi)^3 - 6 - 3

8(pi)^3 - 9  =  about 245.05

 

  

CPhill  Mar 30, 2015
Sort: 

2+0 Answers

 #1
avatar+85958 
+10
Best Answer

If  f ' (x) = 24x^2 + 6sec(x)tan(x), then

f(x) = 8x^3 + 6sec(x) + C

And 

f(0)= 3   ....so

f(0) = 8(0)^3 + 6sec(0) + C  = 3

6 + C =  3

Then C = -3

So

f(pi)  =

8(pi)^3 + 6sec(pi) - 3 =

8(pi)^3 - 6 - 3

8(pi)^3 - 9  =  about 245.05

 

  

CPhill  Mar 30, 2015
 #2
avatar+92254 
0

Nice work Chris, I had to think for a bit about that first integral, it is not one that I have memorized :/

Melody  Mar 31, 2015

27 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details