+0  
 
0
407
2
avatar

If f ' (x) = 24x^2 + 6sec(x)tan(x) and f(0) = 3 then what is f(pi) = ?

Guest Mar 30, 2015

Best Answer 

 #1
avatar+87321 
+10

If  f ' (x) = 24x^2 + 6sec(x)tan(x), then

f(x) = 8x^3 + 6sec(x) + C

And 

f(0)= 3   ....so

f(0) = 8(0)^3 + 6sec(0) + C  = 3

6 + C =  3

Then C = -3

So

f(pi)  =

8(pi)^3 + 6sec(pi) - 3 =

8(pi)^3 - 6 - 3

8(pi)^3 - 9  =  about 245.05

 

  

CPhill  Mar 30, 2015
 #1
avatar+87321 
+10
Best Answer

If  f ' (x) = 24x^2 + 6sec(x)tan(x), then

f(x) = 8x^3 + 6sec(x) + C

And 

f(0)= 3   ....so

f(0) = 8(0)^3 + 6sec(0) + C  = 3

6 + C =  3

Then C = -3

So

f(pi)  =

8(pi)^3 + 6sec(pi) - 3 =

8(pi)^3 - 6 - 3

8(pi)^3 - 9  =  about 245.05

 

  

CPhill  Mar 30, 2015
 #2
avatar+92805 
0

Nice work Chris, I had to think for a bit about that first integral, it is not one that I have memorized :/

Melody  Mar 31, 2015

10 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.