We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
611
1
avatar+598 

If $f(x)$ is a function defined only for $0 \le x \le 1$, and $f(x) = ax+b$ for constants $a$ and $b$ where $a < 0$, then what is the range of $f$ in terms of $a$ and $b$? Express your answer in interval notation.

 Aug 28, 2017

Best Answer 

 #1
avatar+7354 
+4

f(x)  is defined only for  0 ≤ x ≤ 1  , and  f(x)  =  ax + b  for constants  a  and  b  where  a < 0  .

 

 

Since  a  is negative, the smallest possible value for  f(x)  will be when  x = 1  .

f(1)  =  a(1) + b  =  a + b

 

Then, the largest possible value for  f(x)  will be when  x = 0  .

f(0)  =  a(0) + b  =  b

 

 

The smallest possible value for  f(x)  is  a + b  , and the largest possible value for  f(x)  is  b  .

 

So......the range for  f(x)  is  [ a + b ,  b ]  .

 Aug 29, 2017
 #1
avatar+7354 
+4
Best Answer

f(x)  is defined only for  0 ≤ x ≤ 1  , and  f(x)  =  ax + b  for constants  a  and  b  where  a < 0  .

 

 

Since  a  is negative, the smallest possible value for  f(x)  will be when  x = 1  .

f(1)  =  a(1) + b  =  a + b

 

Then, the largest possible value for  f(x)  will be when  x = 0  .

f(0)  =  a(0) + b  =  b

 

 

The smallest possible value for  f(x)  is  a + b  , and the largest possible value for  f(x)  is  b  .

 

So......the range for  f(x)  is  [ a + b ,  b ]  .

hectictar Aug 29, 2017

26 Online Users

avatar
avatar
avatar