If \(f(x)= [x+1/x-1]^3\) then f'(2)= ?
\(f'(x)= 3[x+1/x-1]^2\)just not sure what to do after that
Remember...
\(\frac{d}{dx}u^3 \,=\, 3u^2\,\cdot\,\frac{d}{dx}u\)
So
\(f'(x)\,=\,3[x+\frac1x-1]^2\,\cdot\,\frac{d}{dx}[x+\frac1x-1] \\~\\ f'(x)\,=\,3[x+\frac1x-1]^2\,\cdot\,[\frac{d}{dx}x+\frac{d}{dx}\frac1x-\frac{d}{dx}1] \\~\\ f'(x)\,=\,3[x+\frac1x-1]^2\,\cdot\,[1-x^{-2}]\)
To find f'(2) , plug in 2 for x .
\(f'(2)\,=\,3[2+\frac12-1]^2\,\cdot\,[1-2^{-2}] \\~\\ f'(2)\,=\,3[\frac32]^2\,\cdot\,[1-\frac1{4}] \\~\\ f'(2)\,=\,3[\frac94]\,\cdot\,[\frac3{4}] \\~\\ f'(2)\,=\,\frac{81}{16}\)
( If f(x) is meant to be \([\frac{x+1}{x-1}]^3\) then you get a different answer. )