+0  
 
0
236
2
avatar+272 

If f(x)=x^3-8, what is f^{-1}(f(f^{-1}(19)))?

 

thanks

WhichWitchIsWhich  Nov 2, 2017

Best Answer 

 #2
avatar+7181 
+1

f( f-1(x)  )   =   x

 

Therefore

 

f( f-1(19) )   =   19

 

And

 

f-1(   f( f-1(19) )   )   =   f-1( 19 )

 

To find  f-1(19)  , lets first find  f-1(x) .

 

f(x)  =  x3 - 8

 

y  =  x3 - 8     →     y + 8  =  x3     →     (y + 8)1/3   =  x

 

f-1(x)  =  (x + 8)1/3      Now plug in  19  into this function.

 

f-1(19)  =  (19 + 8)1/3   =   271/3   =   3

hectictar  Nov 2, 2017
 #1
avatar+541 
+1

I'm assuming f^{-1} is a way of switching the input and output values, which works for this function. Therefore f^{-1}(f(f^{-1(19))) --> f^{-1} = 19, so f(x) = 19. I substituted the equation in and got x^3-8 = 19. I added 8 to each side to get x^3 = 27. To get x without an exponent, I took the cube root of each side, getting x = 3. Either way, f^{-1}(f(f^{-1(19))) = f^{-1}(19) = f(3)

helperid1839321  Nov 2, 2017
 #2
avatar+7181 
+1
Best Answer

f( f-1(x)  )   =   x

 

Therefore

 

f( f-1(19) )   =   19

 

And

 

f-1(   f( f-1(19) )   )   =   f-1( 19 )

 

To find  f-1(19)  , lets first find  f-1(x) .

 

f(x)  =  x3 - 8

 

y  =  x3 - 8     →     y + 8  =  x3     →     (y + 8)1/3   =  x

 

f-1(x)  =  (x + 8)1/3      Now plug in  19  into this function.

 

f-1(19)  =  (19 + 8)1/3   =   271/3   =   3

hectictar  Nov 2, 2017

31 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.