+0  
 
0
314
2
avatar+272 

If f(x)=x^3-8, what is f^{-1}(f(f^{-1}(19)))?

 

thanks

 Nov 2, 2017

Best Answer 

 #2
avatar+7348 
+1

f( f-1(x)  )   =   x

 

Therefore

 

f( f-1(19) )   =   19

 

And

 

f-1(   f( f-1(19) )   )   =   f-1( 19 )

 

To find  f-1(19)  , lets first find  f-1(x) .

 

f(x)  =  x3 - 8

 

y  =  x3 - 8     →     y + 8  =  x3     →     (y + 8)1/3   =  x

 

f-1(x)  =  (x + 8)1/3      Now plug in  19  into this function.

 

f-1(19)  =  (19 + 8)1/3   =   271/3   =   3

 Nov 2, 2017
 #1
avatar+556 
+1

I'm assuming f^{-1} is a way of switching the input and output values, which works for this function. Therefore f^{-1}(f(f^{-1(19))) --> f^{-1} = 19, so f(x) = 19. I substituted the equation in and got x^3-8 = 19. I added 8 to each side to get x^3 = 27. To get x without an exponent, I took the cube root of each side, getting x = 3. Either way, f^{-1}(f(f^{-1(19))) = f^{-1}(19) = f(3)

 Nov 2, 2017
 #2
avatar+7348 
+1
Best Answer

f( f-1(x)  )   =   x

 

Therefore

 

f( f-1(19) )   =   19

 

And

 

f-1(   f( f-1(19) )   )   =   f-1( 19 )

 

To find  f-1(19)  , lets first find  f-1(x) .

 

f(x)  =  x3 - 8

 

y  =  x3 - 8     →     y + 8  =  x3     →     (y + 8)1/3   =  x

 

f-1(x)  =  (x + 8)1/3      Now plug in  19  into this function.

 

f-1(19)  =  (19 + 8)1/3   =   271/3   =   3

hectictar Nov 2, 2017

38 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.