\(If\ f(x)=x^{10}+2x^9-2x^8-2x^7+x^6+3x^2+6x+1\ ,\)
\(then\ what\ is\ f(\sqrt{2-1}\ )\)
\(f(\sqrt{2-1})=f(\sqrt1\ )=1\)
!
.Why f(1) = 1?
\(f(\sqrt{2-1}) = f(\sqrt{1}) = f(1) \)
so \(f(1)= 1^10 + 2(1)^9 - 2(1)^8 - 2(1)^7 + 1^6 + 3(1)^2 + 6(1) + 1 = 1 + 2 - 2 - 2 + 1 + 3 + 6 + 1 = 3 + 6 + 1 = 10 \)
so \(f(1) = 10 \) not 1,where im wrong?
Thanks!