+0  
 
0
626
3
avatar+980 

If \(\sqrt{x+\!\sqrt{x+\!\sqrt{x+\!\sqrt{x+\cdots}}}}=9\), find x.

 Apr 27, 2020
 #1
avatar
0

if you square it,

 x+ \(\sqrt{x+\sqrt{x+...}}\)=81

 

so x=72

 Apr 27, 2020
 #2
avatar
+1

wow, just wow, a very thoughtful explanation!

Guest Apr 27, 2020
 #3
avatar+658 
+2

Since the square root goes on for infinity:

\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x...}}}}=\sqrt{x+\sqrt{x+\sqrt{x...}}}\)

 

Let us set \(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x...}}}}=y\)

 

This means: \(y=9\)

 

This also means: \(\sqrt{x+y}=9\)

Substitute \(y\)\(\sqrt{x+9}=9\)

Square both sides: \(x+9=81\)

 

\(\boxed{x=72}\)

 Apr 27, 2020

2 Online Users