Since the square root goes on for infinity:
\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x...}}}}=\sqrt{x+\sqrt{x+\sqrt{x...}}}\)
Let us set \(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x...}}}}=y\)
This means: \(y=9\)
This also means: \(\sqrt{x+y}=9\)
Substitute \(y\): \(\sqrt{x+9}=9\)
Square both sides: \(x+9=81\)
\(\boxed{x=72}\)