+0  
 
0
33
1
avatar

If sec(x) = -7/3, and in the second quadrant, find tan(x) and sin(x)

Guest Oct 19, 2018
 #1
avatar+307 
+2

sec(x) = -7/3 <=> \(\frac{1}{cos(x)}=\frac{-7}{3} \) <=> \(cos(x) = \frac{-3}{7}\) 

\(cos^2(x)=\frac{9}{49}\),We know \(sin^2(x) + cos^2(x) =1\)

So \(1-cos^2(x)=\frac{49-9}{49}\)<=> \(sin^2(x)=\frac{40}{49}\) => \(sin(x)=\frac{\sqrt{40}}{7}\) because is in the second quadrant its 

positive

and \(tan(x)=\frac{sin(x)}{cos(x)}=\frac{\frac{\sqrt{40}}{7}}{\frac{-3}{7}}\)<=> \(tan(x)=-\frac{\sqrt{40}}{3}\)

 

Hope it helps! 

Dimitristhym  Oct 19, 2018
edited by Dimitristhym  Oct 19, 2018

35 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.