We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
186
1
avatar

If sec(x) = -7/3, and in the second quadrant, find tan(x) and sin(x)

 Oct 19, 2018
 #1
avatar+324 
+1

sec(x) = -7/3 <=> \(\frac{1}{cos(x)}=\frac{-7}{3} \) <=> \(cos(x) = \frac{-3}{7}\) 

\(cos^2(x)=\frac{9}{49}\),We know \(sin^2(x) + cos^2(x) =1\)

So \(1-cos^2(x)=\frac{49-9}{49}\)<=> \(sin^2(x)=\frac{40}{49}\) => \(sin(x)=\frac{\sqrt{40}}{7}\) because is in the second quadrant its 

positive

and \(tan(x)=\frac{sin(x)}{cos(x)}=\frac{\frac{\sqrt{40}}{7}}{\frac{-3}{7}}\)<=> \(tan(x)=-\frac{\sqrt{40}}{3}\)

 

Hope it helps! 

 Oct 19, 2018
edited by Dimitristhym  Oct 19, 2018

27 Online Users

avatar
avatar