We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
27
3
avatar+248 

If (x+y)^2=78  and xy=13, what is (x-y)^2?

Thanks!

 Jun 9, 2019
 #1
avatar+4249 
+2

(x+y)^2=x^2+y^2+2xy=78

 

x^2+y^2+2(13)=78

 

x^2+y^2=52

 

(x-y)^2=x^2+y^2-2xy, 52-2(13)=52-26=26,

 

-tertre

 
 Jun 9, 2019
edited by Guest  Jun 9, 2019
edited by Guest  Jun 9, 2019
 #3
avatar+101085 
+2

Ah, tertre....you beat me to it....sneaky  !!!!

 

 

cool cool cool

 
CPhill  Jun 9, 2019
 #2
avatar+101085 
+4

( x + y)^2  = 78

x^2 + 2xy + y^2  = 78

If xy = 13 .....then

x^2 + y^2 + 2(13) = 78

x^2 + y^2 + 26 = 78

x^2 + y^2  = 52

 

So

 

(x - y)^2  =  

x^2 - 2xy + y^2  =

(x^2 + y^2) - 2xy =

(52) - 2(13)  =

26

 

 

 

 

cool cool cool 

 
 Jun 9, 2019

13 Online Users

avatar