We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
41
1
avatar

if x + y + z = 1 and x^2 + y^2 + z^2 = 3, then find the value of xy + xz + yz.

Hint: Expand (x + y + z)^2 first and compare left and right sides of the equation.

 Jun 10, 2019
 #1
avatar+22260 
+3

if x + y + z = 1 and x^2 + y^2 + z^2 = 3,
then find the value of xy + xz + yz. ​

 

Expand (x + y + z)^2

 

\(\begin{array}{rcll} (x + y + z)^2 &=& 1 \\ x^2+y^2+z^2+2(xy+yz+xz) &=& 1 \quad | \quad x^2 + y^2 + z^2 = 3 \\ 3+2(xy+yz+xz) &=& 1 \\ 2(xy+yz+xz) &=& -2 \\ \mathbf{xy+yz+xz} &=& \mathbf{-1} \\ \end{array}\)

 

laugh

 
 Jun 10, 2019

7 Online Users

avatar