+0  
 
0
480
1
avatar

if x + y + z = 1 and x^2 + y^2 + z^2 = 3, then find the value of xy + xz + yz.

Hint: Expand (x + y + z)^2 first and compare left and right sides of the equation.

 Jun 10, 2019
 #1
avatar+25342 
+3

if x + y + z = 1 and x^2 + y^2 + z^2 = 3,
then find the value of xy + xz + yz. ​

 

Expand (x + y + z)^2

 

\(\begin{array}{rcll} (x + y + z)^2 &=& 1 \\ x^2+y^2+z^2+2(xy+yz+xz) &=& 1 \quad | \quad x^2 + y^2 + z^2 = 3 \\ 3+2(xy+yz+xz) &=& 1 \\ 2(xy+yz+xz) &=& -2 \\ \mathbf{xy+yz+xz} &=& \mathbf{-1} \\ \end{array}\)

 

laugh

 Jun 10, 2019

8 Online Users

avatar
avatar