+0  
 
0
1
287
2
avatar+90 

How does one verify \(\frac{2tanx}{tan2x}=2-{sec}^{2}x\)

dom6547  Nov 12, 2017
 #1
avatar
+2

This is long and detailed answer courtesy of "Mathematica 11 Home Edition"

 

Verify the following identity:
2 (tan(x))/(tan(2 x)) = 2 - sec(x)^2

Multiply both sides by tan(2 x):
2 tan(x) = ^?tan(2 x) (2 - sec(x)^2)

 

Write secant as 1/cosine and tangent as sine/cosine:
2 (sin(x))/(cos(x)) = ^?(2 - 1/(cos(x)) ^2 ) (sin(2 x))/(cos(2 x))

(2 - (1/(cos(x)))^2) ((sin(2 x))/(cos(2 x))) = ((2 - cos(x)^(-2)) sin(2 x))/(cos(2 x)):
(2 sin(x))/(cos(x)) = ^?(sin(2 x) (2 - 1/cos(x)^2))/(cos(2 x))

 

Put 2 - 1/cos(x)^2 over the common denominator cos(x)^2: 2 - 1/cos(x)^2 = (2 cos(x)^2 - 1)/cos(x)^2:
(2 sin(x))/(cos(x)) = ^?((2 cos(x)^2 - 1)/cos(x)^2 sin(2 x))/(cos(2 x))

Cross multiply:
2 cos(x)^2 cos(2 x) sin(x) = ^?cos(x) sin(2 x) (2 cos(x)^2 - 1

 

Divide both sides by cos(x):
2 cos(x) cos(2 x) sin(x) = ^?sin(2 x) (2 cos(x)^2 - 1)

cos(2 x) = 1 - 2 sin(x)^2:


2 cos(x) 1 - 2 sin(x)^2 sin(x) = ^?sin(2 x) (2 cos(x)^2 - 1)

2 cos(x) (1 - 2 sin(x)^2) sin(x) = 2 cos(x) sin(x) - 4 cos(x) sin(x)^3:
2 cos(x) sin(x) - 4 cos(x) sin(x)^3 = ^?sin(2 x) (2 cos(x)^2 - 1)

cos(x)^2 = 1 - sin(x)^2:


2 cos(x) sin(x) - 4 cos(x) sin(x)^3 = ^?sin(2 x) (2 1 - sin(x)^2 - 1)

2 (1 - sin(x)^2) = 2 - 2 sin(x)^2:
2 cos(x) sin(x) - 4 cos(x) sin(x)^3 = ^?sin(2 x) (2 - 2 sin(x)^2 - 1)

-1 + 2 - 2 sin(x)^2 = 1 - 2 sin(x)^2:


2 cos(x) sin(x) - 4 cos(x) sin(x)^3 = ^?1 - 2 sin(x)^2 sin(2 x)

sin(2 x) = 2 sin(x) cos(x):


2 cos(x) sin(x) - 4 cos(x) sin(x)^3 = ^?2 cos(x) sin(x) (1 - 2 sin(x)^2)

(1 - 2 sin(x)^2)×2 cos(x) sin(x) = 2 cos(x) sin(x) - 4 cos(x) sin(x)^3:
2 cos(x) sin(x) - 4 cos(x) sin(x)^3 = ^?2 cos(x) sin(x) - 4 cos(x) sin(x)^3

The left hand side and right hand side are identical:
 

Guest Nov 12, 2017
 #2
avatar+90 
+1

Thank you!

The spell that would turn you into kelp has been reversed!

dom6547  Nov 12, 2017

1 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.