+0  
 
0
90
1
avatar

Find all complex numbers $z$ such that $z^4 = -4.$

Note: All solutions should be expressed in the form $a+bi$ , where $a$   and $b$ are real numbers.

I'm not exactly sure how to start or solve this. Can I have a hint?

 Dec 20, 2020
 #1
avatar
0

 By Hamilton's Theorem, the solutions are z = 4^{1/4}*e^(pi*i/4), 4^{1/4}*e^(pi*i/4 + pi/4), 4^{1/4}*e^(pi*i/4 + 2*pi/4), and 4^{1/4}*e^(pi*i/4 + 3*pi/4).  Since 4^{1/4} = sqrt(2) and e^(pi*i/4) = (1 + i)/sqrt(2), the first solution is 1 + i.  Then the other roots work out as

 

4^{1/4}*e^(pi*i/4 + pi/4) = 1 - i,

4^{1/4}*e^(pi*i/4 + 2*pi/4) = -1 - i, and

4^{1/4}*e^(pi*i/4 + 3*pi/4) = -1 + i.

 Dec 28, 2020

32 Online Users