We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
163
1
avatar+210 

In a certain isosceles right triangle, the altitude to the hypotenuse has length \(4\sqrt2\). What is the area of the triangle?

 Sep 1, 2018
 #1
avatar+387 
+1

If the right triangle is isosceles, the two legs must be equal. By using Pythagorean Theorem, we can get \(2(a^2) = (4\sqrt{2})^2\) which equals \(2(a^2) = 32\). So \(a^2 = 16\). This gives us \(a = 4\). If the legs of the triangle are \(4\), we can get the area to be \(8\).

 

- Daisy

 Sep 1, 2018

25 Online Users

avatar