In a certain isosceles right triangle, the altitude to the hypotenuse has length \(4\sqrt2\). What is the area of the triangle?
If the right triangle is isosceles, the two legs must be equal. By using Pythagorean Theorem, we can get \(2(a^2) = (4\sqrt{2})^2\) which equals \(2(a^2) = 32\). So \(a^2 = 16\). This gives us \(a = 4\). If the legs of the triangle are \(4\), we can get the area to be \(8\).
- Daisy