+0

# In how many ways can the digits of 45025 be arranged to form a 5-digit number?

0
133
2

In how many ways can the digits of 45025 be arranged to form a 5-digit number?

Jan 29, 2021

#1
+1

[(2, 0, 4, 5, 5), (2, 0, 5, 4, 5), (2, 0, 5, 5, 4), (2, 4, 0, 5, 5), (2, 4, 5, 0, 5), (2, 4, 5, 5, 0), (2, 5, 0, 4, 5), (2, 5, 0, 5, 4), (2, 5, 4, 0, 5), (2, 5, 4, 5, 0), (2, 5, 5, 0, 4), (2, 5, 5, 4, 0), (4, 0, 2, 5, 5), (4, 0, 5, 2, 5), (4, 0, 5, 5, 2), (4, 2, 0, 5, 5), (4, 2, 5, 0, 5), (4, 2, 5, 5, 0), (4, 5, 0, 2, 5), (4, 5, 0, 5, 2), (4, 5, 2, 0, 5), (4, 5, 2, 5, 0), (4, 5, 5, 0, 2), (4, 5, 5, 2, 0), (5, 0, 2, 4, 5), (5, 0, 2, 5, 4), (5, 0, 4, 2, 5), (5, 0, 4, 5, 2), (5, 0, 5, 2, 4), (5, 0, 5, 4, 2), (5, 2, 0, 4, 5), (5, 2, 0, 5, 4), (5, 2, 4, 0, 5), (5, 2, 4, 5, 0), (5, 2, 5, 0, 4), (5, 2, 5, 4, 0), (5, 4, 0, 2, 5), (5, 4, 0, 5, 2), (5, 4, 2, 0, 5), (5, 4, 2, 5, 0), (5, 4, 5, 0, 2), (5, 4, 5, 2, 0), (5, 5, 0, 2, 4), (5, 5, 0, 4, 2), (5, 5, 2, 0, 4), (5, 5, 2, 4, 0), (5, 5, 4, 0, 2), (5, 5, 4, 2, 0)] >Total distinct permutations = 48 ways.

Jan 29, 2021
#2
+120023
+1

Put the  0   in any  one of the trailing  four positions

And the  rest of the digits can be arranged in  4!/2!  identifiable ways  =   24/2 =  12  ways

So  4 * 12  =   48.....just as the guest found  !!!!

Jan 29, 2021