+0  
 
0
57
2
avatar

In how many ways can the letters of the word APPLE be rearranged?

 Dec 7, 2020
 #1
avatar
+1

A P P L E = 5! / 2==60 PERMUTATIONS:

 

APPLE, APPEL, APLPE, APLEP, APEPL, APELP, ALPPE, ALPEP, ALEPP, AEPPL, AEPLP, AELPP, PAPLE, PAPEL, PALPE, PALEP, PAEPL, PAELP, PPALE, PPAEL, PPLAE, PPLEA, PPEAL, PPELA, PLAPE, PLAEP, PLPAE, PLPEA, PLEAP, PLEPA, PEAPL, PEALP, PEPAL, PEPLA, PELAP, PELPA, LAPPE, LAPEP, LAEPP, LPAPE, LPAEP, LPPAE, LPPEA, LPEAP, LPEPA, LEAPP, LEPAP, LEPPA, EAPPL, EAPLP, EALPP, EPAPL, EPALP, EPPAL, EPPLA, EPLAP, EPLPA, ELAPP, ELPAP, ELPPA, >Total distinct permutations = 60

 Dec 7, 2020
 #2
avatar+114221 
+1

Number  of  identifiable  "words"  =

 

Permutations of all the letters in "APPLE"   /    (repeated letters) !

 

5!  / 2!  =     120   /  2  =    60

 

Just as the Guest found   !!!!

 

cool cool cool

 Dec 7, 2020

28 Online Users

avatar
avatar