+0  
 
-1
3237
2
avatar+912 

In parallelogram ABCD , diagonals AC¯¯¯¯¯ and BD¯¯¯¯¯ intersect at point E, BE=2x2−3x , and DE=x2+10 .

What is BD ?

 Nov 4, 2017

Best Answer 

 #2
avatar+129852 
+1

The diagonals of a parallelogram bisect each other....therefore...

 

2x^2  - 3x  = x^2  + 10    simplify as

 

x^2 - 3x  - 10  = 0     factor

 

(x - 5) ( x + 2)  = 0

 

Setting each factor to 0 and solving for x, we have that x = 5  or x  = -2

 

Therefore we have two possible values for BD

 

If  x  = 5  ...BD  =  2 [ (5)^2 + 10]  =  2 [ 35 ]  = 70 units

 

If x = - 2, .....BD  = 2 [ (-2)^2 + 10  ] =  2 [ 14 ]  =  28 units

 

 

cool cool cool

 Nov 5, 2017
 #1
avatar+633 
0

BD = \(\sqrt{3x^{2}-3x+10}\) . This is because, with the Pythagorean theorem, you add the 2 legs of a right triangle and take the square root to get the hypotenuse of it. This only applies if ABCD is a rhombus.

 Nov 4, 2017
 #2
avatar+129852 
+1
Best Answer

The diagonals of a parallelogram bisect each other....therefore...

 

2x^2  - 3x  = x^2  + 10    simplify as

 

x^2 - 3x  - 10  = 0     factor

 

(x - 5) ( x + 2)  = 0

 

Setting each factor to 0 and solving for x, we have that x = 5  or x  = -2

 

Therefore we have two possible values for BD

 

If  x  = 5  ...BD  =  2 [ (5)^2 + 10]  =  2 [ 35 ]  = 70 units

 

If x = - 2, .....BD  = 2 [ (-2)^2 + 10  ] =  2 [ 14 ]  =  28 units

 

 

cool cool cool

CPhill Nov 5, 2017

2 Online Users

avatar