We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
2183
2
avatar+1016 

In parallelogram ABCD , diagonals AC¯¯¯¯¯ and BD¯¯¯¯¯ intersect at point E, BE=2x2−3x , and DE=x2+10 .

What is BD ?

 Nov 4, 2017

Best Answer 

 #2
avatar+102396 
+1

The diagonals of a parallelogram bisect each other....therefore...

 

2x^2  - 3x  = x^2  + 10    simplify as

 

x^2 - 3x  - 10  = 0     factor

 

(x - 5) ( x + 2)  = 0

 

Setting each factor to 0 and solving for x, we have that x = 5  or x  = -2

 

Therefore we have two possible values for BD

 

If  x  = 5  ...BD  =  2 [ (5)^2 + 10]  =  2 [ 35 ]  = 70 units

 

If x = - 2, .....BD  = 2 [ (-2)^2 + 10  ] =  2 [ 14 ]  =  28 units

 

 

cool cool cool

 Nov 5, 2017
 #1
avatar+569 
0

BD = \(\sqrt{3x^{2}-3x+10}\) . This is because, with the Pythagorean theorem, you add the 2 legs of a right triangle and take the square root to get the hypotenuse of it. This only applies if ABCD is a rhombus.

 Nov 4, 2017
 #2
avatar+102396 
+1
Best Answer

The diagonals of a parallelogram bisect each other....therefore...

 

2x^2  - 3x  = x^2  + 10    simplify as

 

x^2 - 3x  - 10  = 0     factor

 

(x - 5) ( x + 2)  = 0

 

Setting each factor to 0 and solving for x, we have that x = 5  or x  = -2

 

Therefore we have two possible values for BD

 

If  x  = 5  ...BD  =  2 [ (5)^2 + 10]  =  2 [ 35 ]  = 70 units

 

If x = - 2, .....BD  = 2 [ (-2)^2 + 10  ] =  2 [ 14 ]  =  28 units

 

 

cool cool cool

CPhill Nov 5, 2017

11 Online Users

avatar