Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+4
3961
1
avatar+619 

In right triangle $ABC$, we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$. If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is a median of $\triangle ABC$, then what is $\cos \angle ABM$?

 Nov 15, 2017
 #1
avatar
+6

cos(ABM) = ?

 

AM=MC=BM=r(circle )

 

tanACB=1024

 

sin(ACB)r=sin(90ABM)rsin(ACB)=cos(ABM)cos(ABM)=sin(arctan(1024))=0.384615384615...ABM=arccos(513)=67.380135051983

 

laugh heureka

 Nov 15, 2017
edited by Guest  Nov 15, 2017

1 Online Users