+0  
 
0
109
1
avatar

 

In the figure, what is the area of triangle ABD? Express your answer as a common fraction.

Guest Aug 25, 2018
 #1
avatar+91186 
+1

Maybe an easier way.....but.....

 

A  = (0, 4)

F = (3, 0)

slope of AF = -4/3

equation of line containing AF    ....   y  = (-4/3)x + 4

 

E  = ( 0, 2)

B = (7,0)

slope of EB  = -2/7

equation of line containing EB  ...  y = (-2/7)x + 2

 

Find the x coordinate of D by setting these two functions equal

 

(-4/3)x + 4  = (-2/7)x + 2

4 - 2 = (-2/7  + 4/3)x

2  = [-6 + 28] /21 x

2 = [22/21]x

42/22   =x

21/11   = x

 

And the associated y coordinate  is  (-2/7)(21/11) + 2  = 16/11

 

So  D  = (21/11 , 16,11)

And the equation of the line joining AB  is  y  =   (-4/7)x + 4

Write this is standard form  ....   4x + 7y  - 28   =   0

 

Now...using the  equation to find the distance from  a point to a line we can find the altitude of triangle ABD

 

l   4(21/11) + 7(16/11)  - 28  l                   l  -112/11 l              112/11

_______________________   =           __________  =        _____

     √[ 4^2 + 7^2 ]                                         √65                       √65

 

And considering AB to be the base, its length is  √ [4^2  + 7^2]  = √65

 

So...the area  of triangle ABD  =  (1/2) √65  * (112/11) / √65  =

 

(1/2) (112 / 11)  =

 

112 /22  =

 

56 /21  units^2

 

 

cool cool cool

CPhill  Aug 25, 2018

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.