+0  
 
0
74
1
avatar+188 

dleete

yasbib555  Jun 26, 2018
edited by yasbib555  Jun 27, 2018
 #1
avatar+88962 
+2

I'm assuming that we have the following :

 

 

Let A  = (0,0)

Since BE   = 2, then AB  =  3BE  = 6...so....AE  = 4

And since angle BAC  = 60°, the point B  is  (6 cos 60°, 6 sin 60°)  = (3, 3√3)

And point  E  is   ( 4cos 60°, 4 sin 60°)   = (2, 2√3)

And  since  AD  = 3, then AC  = 3AD = 9

So  D  is  (3, 0)

 

So.....the  area  of BCDE  =  area  of triangle ABC  -  area of triangle  AED

 

Area of triangle ABC  =  (1/2)DB * AC  = (1/2) (3√3) (9)  = (13.5)√3  units^2

 

And area  of triangle AED  = (1/2) (AD) (2√3)  = (1/2)(3)(2√3)  = 3√3 units^2

 

So...the area  of  quadrilateral BCDE  = [ (13.5)√3  - 3√3] units^2  = (10.5√3) units^2

 

cool cool cool

CPhill  Jun 26, 2018

31 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.