We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# In triangle $ABC$, $AB = 5$, $AC = 6$, and $BC = 7$. Circles are drawn with centers $A$, $B$, and $C$, so that any two circles are externall

+2
698
2

In triangle ABC, AB=5, AC=6, and BC=7. Circles are drawn with centers A, B, and C, so that any two circles are externally tangent. Find the sum of the areas of the circles. Feb 8, 2018

### 2+0 Answers

#1
+3

There might be a better way, but here is one way.

Let the radius of circle A be  a , the radius of circle B be  b , and the radius of circle C be  c . From the given information, we can make these three equations:

a + b  =  5        solve for  a  to get        a  =  5 - b

a + c  =  6        solve for  a  to get        a  =  6 - c

b + c  =  7        solve for  b  to get        b  =  7 - c

5 - b   =   6 - c

Substitute  7 - c  in for  b .

5 - (7 - c)   =   6 - c

Distribute the  -1  to the terms in parenthesees.

5 - 7 + c   =   6 - c

Rearrange

c + c   =   6 - 5 + 7

2c   =   8

c   =   4       Use this value of  c  to find  a  and  b .

a   =   6 - c   =   6 - 4   =   2

b   =   7 - c   =   7 - 4   =   3

area of circle A  +  area of circle B  +  area of circle C   =

22π   +   32π   +   42π   =

4π   +   9π   +   16π   =

29π    sq. units

Feb 8, 2018
#2
+3

In triangle
$$ABC, \overline{AB}=5, \overline{AC}=6,$$
and
$$\overline{BC}=7.$$
Circles are drawn with centers $$A, B,$$ and $$C,$$
so that any two circles are externally tangent.
Find the sum of the areas of the circles. $$\text{Let r_a = radius of circle A } \\ \text{Let r_b = radius of circle B } \\ \text{Let r_c = radius of circle C }$$

$$\begin{array}{|lrcll|} \hline (1) & r_a + r_b &=& 5 \\ (2) & r_b + r_c &=& 7 \\ (3) & r_c + r_a &=& 6 \\ \hline (1)+(2)+(3): \\ & 2(r_a+r_b+r_c) &=& 5+6+7 \\ & 2(r_a+r_b+r_c) &=& 18 \quad & | \quad : 2 \\ & r_a+r_b+r_c &=& 9 \\ \hline \end{array}$$

$$\mathbf{r_c = \ ?}$$

$$\begin{array}{|rcll|} \hline \underbrace{r_a+r_b}_{=5}+r_c &=& 9 \\ 5+r_c &=& 9 \\ r_c &=& 9-5 \\ \mathbf{r_c} &\mathbf{=}& \mathbf{4} \\ \hline \end{array}$$

$$\mathbf{r_a = \ ?}$$

$$\begin{array}{|rcll|} \hline r_a+\underbrace{r_b+r_c}_{=7} &=& 9 \\ r_a+7 &=& 9 \\ r_a &=& 9-7 \\ \mathbf{r_a} &\mathbf{=}& \mathbf{2} \\ \hline \end{array}$$

$$\mathbf{r_b = \ ?}$$

$$\begin{array}{|rcll|} \hline r_a+r_b+r_c &=& 9 \quad & | \quad r_a+r_c = 6\\ 6 + r_b &=& 9 \\ r_b &=& 9-6 \\ \mathbf{r_b} &\mathbf{=}& \mathbf{3} \\ \hline \end{array}$$

The sum of the areas of the circles:

$$\begin{array}{|rcll|} \hline && \pi r_a^2 + \pi r_b^2 + \pi r_c^2 \\ &=& \pi \cdot( r_a^2 + r_b^2 + r_c^2 ) \\ &=& \pi \cdot( 2^2 + 3^2 + 4^2 ) \\ &=& \pi \cdot( 4+9+16 ) \\ &\mathbf{=}& \mathbf{29\pi} \\ \hline \end{array}$$ Feb 8, 2018