In triangle ABC, AB=5, AC=6, and BC=7. Circles are drawn with centers A, B, and C, so that any two circles are externally tangent. Find the sum of the areas of the circles.
There might be a better way, but here is one way.
Let the radius of circle A be a , the radius of circle B be b , and the radius of circle C be c .
From the given information, we can make these three equations:
a + b = 5 solve for a to get a = 5 - b
a + c = 6 solve for a to get a = 6 - c
b + c = 7 solve for b to get b = 7 - c
5 - b = 6 - c
Substitute 7 - c in for b .
5 - (7 - c) = 6 - c
Distribute the -1 to the terms in parenthesees.
5 - 7 + c = 6 - c
Rearrange
c + c = 6 - 5 + 7
2c = 8
c = 4 Use this value of c to find a and b .
a = 6 - c = 6 - 4 = 2
b = 7 - c = 7 - 4 = 3
area of circle A + area of circle B + area of circle C =
22π + 32π + 42π =
4π + 9π + 16π =
29π sq. units
In triangle
\(ABC, \overline{AB}=5, \overline{AC}=6,\)
and
\(\overline{BC}=7.\)
Circles are drawn with centers \(A, B,\) and \(C,\)
so that any two circles are externally tangent.
Find the sum of the areas of the circles.
\(\text{Let $r_a =$ radius of circle $A$ } \\ \text{Let $r_b =$ radius of circle $B$ } \\ \text{Let $r_c =$ radius of circle $C$ }\)
\(\begin{array}{|lrcll|} \hline (1) & r_a + r_b &=& 5 \\ (2) & r_b + r_c &=& 7 \\ (3) & r_c + r_a &=& 6 \\ \hline (1)+(2)+(3): \\ & 2(r_a+r_b+r_c) &=& 5+6+7 \\ & 2(r_a+r_b+r_c) &=& 18 \quad & | \quad : 2 \\ & r_a+r_b+r_c &=& 9 \\ \hline \end{array}\)
\(\mathbf{r_c = \ ?}\)
\(\begin{array}{|rcll|} \hline \underbrace{r_a+r_b}_{=5}+r_c &=& 9 \\ 5+r_c &=& 9 \\ r_c &=& 9-5 \\ \mathbf{r_c} &\mathbf{=}& \mathbf{4} \\ \hline \end{array}\)
\(\mathbf{r_a = \ ?}\)
\(\begin{array}{|rcll|} \hline r_a+\underbrace{r_b+r_c}_{=7} &=& 9 \\ r_a+7 &=& 9 \\ r_a &=& 9-7 \\ \mathbf{r_a} &\mathbf{=}& \mathbf{2} \\ \hline \end{array}\)
\(\mathbf{r_b = \ ?}\)
\(\begin{array}{|rcll|} \hline r_a+r_b+r_c &=& 9 \quad & | \quad r_a+r_c = 6\\ 6 + r_b &=& 9 \\ r_b &=& 9-6 \\ \mathbf{r_b} &\mathbf{=}& \mathbf{3} \\ \hline \end{array}\)
The sum of the areas of the circles:
\(\begin{array}{|rcll|} \hline && \pi r_a^2 + \pi r_b^2 + \pi r_c^2 \\ &=& \pi \cdot( r_a^2 + r_b^2 + r_c^2 ) \\ &=& \pi \cdot( 2^2 + 3^2 + 4^2 ) \\ &=& \pi \cdot( 4+9+16 ) \\ &\mathbf{=}& \mathbf{29\pi} \\ \hline \end{array} \)