+0  
 
+1
150
2
avatar+1442 

In triangle ABC, AC = BC, angle DCB is 40 degrees, and CD is parallel to AB. What is the number of degrees in angle ECD?

Best Answer 

 #1
avatar+7181 
+2

∠DCB  and  ∠CBA  are alternate interior angles, so they have the same measure.

 

∠CBA  and  ∠BAC  are base angles of isosceles triangle ABC, so they have the same measure.

 

So..

 

m∠DCB   =   m∠CBA   =   m∠BAC   =   40°

 

And since there are  180°  in triangle  ABC,

 

m∠ACB   =   180° - 40° - 40°   =   100°

 

And...

 

m∠ACB  +  m∠DCB  +  m∠ECD   =   180°

 

100°  +  40°  +  m∠ECD   =   180°

 

m∠ECD   =   180°  -  40°  -  100°   =   40°

hectictar  Feb 6, 2018
 #1
avatar+7181 
+2
Best Answer

∠DCB  and  ∠CBA  are alternate interior angles, so they have the same measure.

 

∠CBA  and  ∠BAC  are base angles of isosceles triangle ABC, so they have the same measure.

 

So..

 

m∠DCB   =   m∠CBA   =   m∠BAC   =   40°

 

And since there are  180°  in triangle  ABC,

 

m∠ACB   =   180° - 40° - 40°   =   100°

 

And...

 

m∠ACB  +  m∠DCB  +  m∠ECD   =   180°

 

100°  +  40°  +  m∠ECD   =   180°

 

m∠ECD   =   180°  -  40°  -  100°   =   40°

hectictar  Feb 6, 2018
 #2
avatar+1442 
+3

Thanks so much! You're a life-saver!


20 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.