+0  
 
0
42
2
avatar+568 

In triangle ABC, AC = BC, angle DCB is 40 degrees, and CD is parallel to AB. What is the number of degrees in angle ECD?

Best Answer 

 #1
avatar+6365 
+2

∠DCB  and  ∠CBA  are alternate interior angles, so they have the same measure.

 

∠CBA  and  ∠BAC  are base angles of isosceles triangle ABC, so they have the same measure.

 

So..

 

m∠DCB   =   m∠CBA   =   m∠BAC   =   40°

 

And since there are  180°  in triangle  ABC,

 

m∠ACB   =   180° - 40° - 40°   =   100°

 

And...

 

m∠ACB  +  m∠DCB  +  m∠ECD   =   180°

 

100°  +  40°  +  m∠ECD   =   180°

 

m∠ECD   =   180°  -  40°  -  100°   =   40°

hectictar  Feb 6, 2018
Sort: 

2+0 Answers

 #1
avatar+6365 
+2
Best Answer

∠DCB  and  ∠CBA  are alternate interior angles, so they have the same measure.

 

∠CBA  and  ∠BAC  are base angles of isosceles triangle ABC, so they have the same measure.

 

So..

 

m∠DCB   =   m∠CBA   =   m∠BAC   =   40°

 

And since there are  180°  in triangle  ABC,

 

m∠ACB   =   180° - 40° - 40°   =   100°

 

And...

 

m∠ACB  +  m∠DCB  +  m∠ECD   =   180°

 

100°  +  40°  +  m∠ECD   =   180°

 

m∠ECD   =   180°  -  40°  -  100°   =   40°

hectictar  Feb 6, 2018
 #2
avatar+568 
+2

Thanks so much! You're a life-saver!


11 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details