We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
401
2
avatar+1433 

In triangle ABC, AC = BC, angle DCB is 40 degrees, and CD is parallel to AB. What is the number of degrees in angle ECD?

Best Answer 

 #1
avatar+7598 
+2

∠DCB  and  ∠CBA  are alternate interior angles, so they have the same measure.

 

∠CBA  and  ∠BAC  are base angles of isosceles triangle ABC, so they have the same measure.

 

So..

 

m∠DCB   =   m∠CBA   =   m∠BAC   =   40°

 

And since there are  180°  in triangle  ABC,

 

m∠ACB   =   180° - 40° - 40°   =   100°

 

And...

 

m∠ACB  +  m∠DCB  +  m∠ECD   =   180°

 

100°  +  40°  +  m∠ECD   =   180°

 

m∠ECD   =   180°  -  40°  -  100°   =   40°

 Feb 6, 2018
 #1
avatar+7598 
+2
Best Answer

∠DCB  and  ∠CBA  are alternate interior angles, so they have the same measure.

 

∠CBA  and  ∠BAC  are base angles of isosceles triangle ABC, so they have the same measure.

 

So..

 

m∠DCB   =   m∠CBA   =   m∠BAC   =   40°

 

And since there are  180°  in triangle  ABC,

 

m∠ACB   =   180° - 40° - 40°   =   100°

 

And...

 

m∠ACB  +  m∠DCB  +  m∠ECD   =   180°

 

100°  +  40°  +  m∠ECD   =   180°

 

m∠ECD   =   180°  -  40°  -  100°   =   40°

hectictar Feb 6, 2018
 #2
avatar+1433 
+3

Thanks so much! You're a life-saver!


23 Online Users

avatar