+0  
 
0
724
4
avatar

Can you please help evaluating this Indefinite Integral, with steps if possible: ∫(sin(x))^4

I thank you for any help.

Guest Jan 1, 2016

Best Answer 

 #1
avatar+78719 
+15

This type of integral isn't that difficult.....just tedious.....!!!!!

 

∫(sin(x))^4   dx  =

 

∫ [sin^2x)]^2  dx =             sin^2x  =   [1 - cos(2x)] / 2   =  1/2  - cos(2x)/2

 

∫  [ 1/2  - cos(2x)/2]^2 dx  =

 

∫  1/4 - (1/2)cos(2x) + cos^2(2x)/4  dx  =

 

[1/4]x  -  (1/2) ∫ cos (2x)dx   +  (1/4) ∫  cos^2(2x)  dx

 

For the second integral    let  u =  2x        du  = 2 dx   du /2  = dx

 

[1/4]x - (1/2) ∫ cos(u)  du/2   + (1/4) ∫  cos^2(2x)  dx  

 

[1/4]x - (1/4) ∫ cos(u)  du   + (1/4) ∫  cos^2(2x)  dx  

 

[1/4x] - [1/4] sin (u)  + (1/4) ∫  cos^2(2x)  dx 

 

[1/4]x - [1/4] sin(2x)  + (1/4) ∫  cos^2(2x)  dx

 

For the last integral     ........  cos^2(2x)  =  [ 1 + cos(4x] / 2   =  1/2 + cos(4x)/2  

 

[1/4]x - [1/4]sin(2x)  + (1/4) ∫ 1/2  + cos(4x)/2 dx 

 

[1/4]x - [1/4]sin(2x) + [1/8]x   + (1/8) ∫ cos(4x)  dx

 

[3/8]x  - [1/4]sin(2x) + (1/8) ∫ cos(4x)  dx

 

As before.....let u = 4x       du  = 4dx       du/4 = dx

 

[3/8]x -[1/4]sin(2x) + (1/8)  ∫ cos(u) du/4

 

[3/8]x -[1/4]sin(2x) + (1/32)  ∫ cos(u) du

 

[3/8]x -[1/4]sin(2x) + (1/32) sin(u)  + C =

 

[3/8]x -[1/4]sin(2x) + (1/32) sin(4x) + C =

 

[1/32] [ 12x - 8sin(2x) + sin(4x) ] + C

 

 

cool cool cool

CPhill  Jan 1, 2016
edited by CPhill  Jan 1, 2016
Sort: 

4+0 Answers

 #1
avatar+78719 
+15
Best Answer

This type of integral isn't that difficult.....just tedious.....!!!!!

 

∫(sin(x))^4   dx  =

 

∫ [sin^2x)]^2  dx =             sin^2x  =   [1 - cos(2x)] / 2   =  1/2  - cos(2x)/2

 

∫  [ 1/2  - cos(2x)/2]^2 dx  =

 

∫  1/4 - (1/2)cos(2x) + cos^2(2x)/4  dx  =

 

[1/4]x  -  (1/2) ∫ cos (2x)dx   +  (1/4) ∫  cos^2(2x)  dx

 

For the second integral    let  u =  2x        du  = 2 dx   du /2  = dx

 

[1/4]x - (1/2) ∫ cos(u)  du/2   + (1/4) ∫  cos^2(2x)  dx  

 

[1/4]x - (1/4) ∫ cos(u)  du   + (1/4) ∫  cos^2(2x)  dx  

 

[1/4x] - [1/4] sin (u)  + (1/4) ∫  cos^2(2x)  dx 

 

[1/4]x - [1/4] sin(2x)  + (1/4) ∫  cos^2(2x)  dx

 

For the last integral     ........  cos^2(2x)  =  [ 1 + cos(4x] / 2   =  1/2 + cos(4x)/2  

 

[1/4]x - [1/4]sin(2x)  + (1/4) ∫ 1/2  + cos(4x)/2 dx 

 

[1/4]x - [1/4]sin(2x) + [1/8]x   + (1/8) ∫ cos(4x)  dx

 

[3/8]x  - [1/4]sin(2x) + (1/8) ∫ cos(4x)  dx

 

As before.....let u = 4x       du  = 4dx       du/4 = dx

 

[3/8]x -[1/4]sin(2x) + (1/8)  ∫ cos(u) du/4

 

[3/8]x -[1/4]sin(2x) + (1/32)  ∫ cos(u) du

 

[3/8]x -[1/4]sin(2x) + (1/32) sin(u)  + C =

 

[3/8]x -[1/4]sin(2x) + (1/32) sin(4x) + C =

 

[1/32] [ 12x - 8sin(2x) + sin(4x) ] + C

 

 

cool cool cool

CPhill  Jan 1, 2016
edited by CPhill  Jan 1, 2016
 #2
avatar
+5

Thank you very much CPhill. Sorry to have bothered you, on New Year's day no less!.

Guest Jan 1, 2016
 #3
avatar
+10

Take the integral:
integral sin^4(x) dx
Use the reduction formula,  integral sin^m(x) dx = -(cos(x) sin^(m-1)(x))/m + (m-1)/m integral sin^(-2+m)(x) dx, where m = 4:
  =  -1/4 sin^3(x) cos(x)+3/4 integral sin^2(x) dx
Write sin^2(x) as 1/2-1/2 cos(2 x):
  =  -1/4 sin^3(x) cos(x)+3/4 integral (1/2-1/2 cos(2 x)) dx
Integrate the sum term by term and factor out constants:
  =  -1/4 sin^3(x) cos(x)-3/8 integral cos(2 x) dx+3/8 integral 1 dx
For the integrand cos(2 x), substitute u = 2 x and  du = 2  dx:
  =  -1/4 sin^3(x) cos(x)-3/16 integral cos(u) du+3/8 integral 1 dx
The integral of cos(u) is sin(u):
  =  -(3 sin(u))/16-1/4 sin^3(x) cos(x)+3/8 integral 1 dx
The integral of 1 is x:
  =  -(3 sin(u))/16+(3 x)/8-1/4 sin^3(x) cos(x)+constant
Substitute back for u = 2 x:
  =  (3 x)/8-1/4 sin^3(x) cos(x)-3/8 sin(x) cos(x)+constant
Which is equal to:
Answer: | =  1/32 (12 x-8 sin(2 x)+sin(4 x))+constant

Guest Jan 2, 2016
 #4
avatar+91039 
+5

Hi, thanks CPhill and guest.

 

I am just going to look at this bit

sin^2x  =   [1 - cos(2x)] / 2   =  1/2  - cos(2x)/2

 

\(sin^2x =\frac{ 1 - cos(2x)}{2} \)

 

I am hopeless (also stuborn) aboul learning formulas.  I just remember what I feel i have to remember and work the others out each time.

So I do not remember this one :/

 

\(Cos(A+B)=cosAcosB-sinAsinB\qquad \mbox{I have committed this to memory}\\ cos(2x)=cos^2x-sin^2x\\ cos(2x)=1-sin^2x\;\;\;\;\;-sin^2x\\ cos(2x)=1-2sin^2x\\ cos(2x)-1=-2sin^2x\\ \frac{cos(2x)-1}{-2}=sin^2x\\ sin^2x=\frac{1-cos(2x)}{2}\\\)

 

If I need sin^2(2x)   or  cos^2(x)  etc I got through a similar procedure.  

It doesn't take me long because I have had a LOT of practice :)

Melody  Jan 2, 2016

15 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details