Can you please help evaluating this Indefinite Integral, with steps if possible: ∫(sin(x))^4
I thank you for any help.
This type of integral isn't that difficult.....just tedious.....!!!!!
∫(sin(x))^4 dx =
∫ [sin^2x)]^2 dx = sin^2x = [1 - cos(2x)] / 2 = 1/2 - cos(2x)/2
∫ [ 1/2 - cos(2x)/2]^2 dx =
∫ 1/4 - (1/2)cos(2x) + cos^2(2x)/4 dx =
[1/4]x - (1/2) ∫ cos (2x)dx + (1/4) ∫ cos^2(2x) dx
For the second integral let u = 2x du = 2 dx du /2 = dx
[1/4]x - (1/2) ∫ cos(u) du/2 + (1/4) ∫ cos^2(2x) dx
[1/4]x - (1/4) ∫ cos(u) du + (1/4) ∫ cos^2(2x) dx
[1/4x] - [1/4] sin (u) + (1/4) ∫ cos^2(2x) dx
[1/4]x - [1/4] sin(2x) + (1/4) ∫ cos^2(2x) dx
For the last integral ........ cos^2(2x) = [ 1 + cos(4x] / 2 = 1/2 + cos(4x)/2
[1/4]x - [1/4]sin(2x) + (1/4) ∫ 1/2 + cos(4x)/2 dx
[1/4]x - [1/4]sin(2x) + [1/8]x + (1/8) ∫ cos(4x) dx
[3/8]x - [1/4]sin(2x) + (1/8) ∫ cos(4x) dx
As before.....let u = 4x du = 4dx du/4 = dx
[3/8]x -[1/4]sin(2x) + (1/8) ∫ cos(u) du/4
[3/8]x -[1/4]sin(2x) + (1/32) ∫ cos(u) du
[3/8]x -[1/4]sin(2x) + (1/32) sin(u) + C =
[3/8]x -[1/4]sin(2x) + (1/32) sin(4x) + C =
[1/32] [ 12x - 8sin(2x) + sin(4x) ] + C
This type of integral isn't that difficult.....just tedious.....!!!!!
∫(sin(x))^4 dx =
∫ [sin^2x)]^2 dx = sin^2x = [1 - cos(2x)] / 2 = 1/2 - cos(2x)/2
∫ [ 1/2 - cos(2x)/2]^2 dx =
∫ 1/4 - (1/2)cos(2x) + cos^2(2x)/4 dx =
[1/4]x - (1/2) ∫ cos (2x)dx + (1/4) ∫ cos^2(2x) dx
For the second integral let u = 2x du = 2 dx du /2 = dx
[1/4]x - (1/2) ∫ cos(u) du/2 + (1/4) ∫ cos^2(2x) dx
[1/4]x - (1/4) ∫ cos(u) du + (1/4) ∫ cos^2(2x) dx
[1/4x] - [1/4] sin (u) + (1/4) ∫ cos^2(2x) dx
[1/4]x - [1/4] sin(2x) + (1/4) ∫ cos^2(2x) dx
For the last integral ........ cos^2(2x) = [ 1 + cos(4x] / 2 = 1/2 + cos(4x)/2
[1/4]x - [1/4]sin(2x) + (1/4) ∫ 1/2 + cos(4x)/2 dx
[1/4]x - [1/4]sin(2x) + [1/8]x + (1/8) ∫ cos(4x) dx
[3/8]x - [1/4]sin(2x) + (1/8) ∫ cos(4x) dx
As before.....let u = 4x du = 4dx du/4 = dx
[3/8]x -[1/4]sin(2x) + (1/8) ∫ cos(u) du/4
[3/8]x -[1/4]sin(2x) + (1/32) ∫ cos(u) du
[3/8]x -[1/4]sin(2x) + (1/32) sin(u) + C =
[3/8]x -[1/4]sin(2x) + (1/32) sin(4x) + C =
[1/32] [ 12x - 8sin(2x) + sin(4x) ] + C
Thank you very much CPhill. Sorry to have bothered you, on New Year's day no less!.
Take the integral:
integral sin^4(x) dx
Use the reduction formula, integral sin^m(x) dx = -(cos(x) sin^(m-1)(x))/m + (m-1)/m integral sin^(-2+m)(x) dx, where m = 4:
= -1/4 sin^3(x) cos(x)+3/4 integral sin^2(x) dx
Write sin^2(x) as 1/2-1/2 cos(2 x):
= -1/4 sin^3(x) cos(x)+3/4 integral (1/2-1/2 cos(2 x)) dx
Integrate the sum term by term and factor out constants:
= -1/4 sin^3(x) cos(x)-3/8 integral cos(2 x) dx+3/8 integral 1 dx
For the integrand cos(2 x), substitute u = 2 x and du = 2 dx:
= -1/4 sin^3(x) cos(x)-3/16 integral cos(u) du+3/8 integral 1 dx
The integral of cos(u) is sin(u):
= -(3 sin(u))/16-1/4 sin^3(x) cos(x)+3/8 integral 1 dx
The integral of 1 is x:
= -(3 sin(u))/16+(3 x)/8-1/4 sin^3(x) cos(x)+constant
Substitute back for u = 2 x:
= (3 x)/8-1/4 sin^3(x) cos(x)-3/8 sin(x) cos(x)+constant
Which is equal to:
Answer: | = 1/32 (12 x-8 sin(2 x)+sin(4 x))+constant
Hi, thanks CPhill and guest.
I am just going to look at this bit
sin^2x = [1 - cos(2x)] / 2 = 1/2 - cos(2x)/2
sin2x=1−cos(2x)2
I am hopeless (also stuborn) aboul learning formulas. I just remember what I feel i have to remember and work the others out each time.
So I do not remember this one :/
Cos(A+B)=cosAcosB−sinAsinBI have committed this to memorycos(2x)=cos2x−sin2xcos(2x)=1−sin2x−sin2xcos(2x)=1−2sin2xcos(2x)−1=−2sin2xcos(2x)−1−2=sin2xsin2x=1−cos(2x)2
If I need sin^2(2x) or cos^2(x) etc I got through a similar procedure.
It doesn't take me long because I have had a LOT of practice :)