Integrate the following: ∫x^2 sin^3 (x) dx. Also, please show steps of solution.
I thank you for any help.
Integrate the following: ∫x^2 sin^3 (x) dx. Also, please show steps of solution.
I thank you for any help.
∫x2sin3xdx=∫x2sinxsin2xdx=∫x2sinxsin2xdxcos2x=cos2x−sin2xcos2x=1−2sin2x2sin2x=1−cos2xsin2x=1−cos2x2=∫x2sinx1−cos2x2dx=∫x2sin(x)−x2sinxcos(2x)2dx=−12∫[x2sin(x)cos(2x)−x2sin(x)]dx
sin(α−β)+sin(α+β)=sin(α)cos(β)−sin(β)cos(α)+sin(α)cos(β)+sin(β)cos(α)=2sin(α)cos(β)so2sin(x)cos(2x)=sin(x−2x)+sin(x+2x)2sin(x)cos(2x)=sin(−x)+sin(3x)2sin(x)cos(2x)=sin(3x)−sin(x)sin(x)cos(2x)=12[sin(3x)−sin(x)]=−12∫[x2sin(x)cos(2x)−x2sin(x)]dx=−12∫x22[sin(3x)−sin(x)]−x2sin(x)]dx=−12∫[x22sin(3x)−x22sin(x)−x2sin(x)]dx=−12∫[x22sin(3x)−3x22sin(x)]dx=−14(∫[x2sin(3x)]dx−∫[3x2sin(x)]dx)Now work out each of these two integral seperately using integration by parts.
Maybe I will finish it later (it is 1:36am) anyway, that is a good start for you :)
Integrate the following: ∫x^2 sin^3 (x) dx. Also, please show steps of solution.
I thank you for any help.
Formula sin3(x):
sin(3x)=sin(2x+x)=sin(2x)⏟=2sin(x)cos(x)⋅cos(x)+cos(2x)⏟=cos2(x)−sin2(x)⋅sin(x)=2sin(x)cos2(x)+cos2(x)sin(x)−sin3(x)=3sin(x)cos2(x)−sin3(x)=3sin(x)(1−sin2(x))−sin3(x)=3sin(x)−3sin3(x)−sin3(x)sin(3x)=3sin(x)−4sin3(x)4sin3(x)=3sin(x)−sin(3x)sin3(x)=14(3sin(x)−sin(3x))
Double Integration by parts:
∫u⋅v′=u⋅∫v′−∫(u′⋅∫v′)|Integrate by parts∫(u′⋅∫v′)=u′⋅∬v′−∫(u″⋅∬v′)|Integrate by parts∫u⋅v′=u⋅∫v′−(u′⋅∬v′−∫(u″⋅∬v′))∫u⋅v′=u⋅∫v′−u′⋅∬v′+∫(u″⋅∬v′)
∫x2sin3(x) dxu=x2u′=2xu″=2v′=sin3(x)∫u⋅v′=u⋅∫v′−u′⋅∬v′+∫(u″⋅∬v′)∫x2⋅sin3(x)=x2⋅∫sin3(x)−2x⋅∬sin3(x)+2⋅∭sin3(x)
∫sin3(x) dx
∫sin3(x)=14(∫3sin(x)−∫sin(3x))∫sin3(x)=14(−3cos(x)+13cos(3x))
∬sin3(x) dx
∬sin3(x)=14(∫−3cos(x)+∫13cos(3x))∬sin3(x)=14(−3sin(x)+19sin(3x))
∭sin3(x) dx
∭sin3(x)=14(∫−3sin(x)+∫19sin(3x))∭sin3(x)=14(3cos(x)−127cos(3x))
∫x2⋅sin3(x)=x2⋅∫sin3(x)−2x⋅∬sin3(x)+2⋅∭sin3(x)∫x2⋅sin3(x)=x2⋅14[−3cos(x)+13cos(3x)]−2x⋅14[−3sin(x)+19sin(3x)]+2⋅14[3cos(x)−127cos(3x)]∫x2⋅sin3(x)=14x2[−3cos(x)+13cos(3x)]−12x[−3sin(x)+19sin(3x)]+12[3cos(x)−127cos(3x)]