Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
0
953
11
avatar

Integrate the following:  ∫x^2 sin^3 (x) dx. Also, please show steps of solution.

I thank you for any help.

 Apr 2, 2017
 #3
avatar+33654 
+2

First part:

 Apr 2, 2017
 #4
avatar+33654 
+2

Second part:

 Apr 2, 2017
 #5
avatar+33654 
+3

Third part:

 Apr 2, 2017
 #6
avatar
+2

Thank you Alan.

 Apr 2, 2017
 #7
avatar+118703 
+3

Integrate the following:  ∫x^2 sin^3 (x) dx. Also, please show steps of solution.

I thank you for any help.

 

x2sin3xdx=x2sinxsin2xdx=x2sinxsin2xdxcos2x=cos2xsin2xcos2x=12sin2x2sin2x=1cos2xsin2x=1cos2x2=x2sinx1cos2x2dx=x2sin(x)x2sinxcos(2x)2dx=12[x2sin(x)cos(2x)x2sin(x)]dx

 

sin(αβ)+sin(α+β)=sin(α)cos(β)sin(β)cos(α)+sin(α)cos(β)+sin(β)cos(α)=2sin(α)cos(β)so2sin(x)cos(2x)=sin(x2x)+sin(x+2x)2sin(x)cos(2x)=sin(x)+sin(3x)2sin(x)cos(2x)=sin(3x)sin(x)sin(x)cos(2x)=12[sin(3x)sin(x)]=12[x2sin(x)cos(2x)x2sin(x)]dx=12x22[sin(3x)sin(x)]x2sin(x)]dx=12[x22sin(3x)x22sin(x)x2sin(x)]dx=12[x22sin(3x)3x22sin(x)]dx=14([x2sin(3x)]dx[3x2sin(x)]dx)Now work out each of these two integral seperately using integration by parts.

 

Maybe I will finish it later  (it is 1:36am)  anyway, that is a good start for you :)

 Apr 2, 2017
 #8
avatar+118703 
+1

I see Alan beat me to it :))

Melody  Apr 2, 2017
 #9
avatar
+1

Thank you Melody. I shall take it from here.

 Apr 2, 2017
 #10
avatar+33654 
+2

Here's an alternative approach:

 

 Apr 3, 2017
 #11
avatar+26396 
+2

Integrate the following:  ∫x^2 sin^3 (x) dx. Also, please show steps of solution.

I thank you for any help.

 

Formula sin3(x):

sin(3x)=sin(2x+x)=sin(2x)=2sin(x)cos(x)cos(x)+cos(2x)=cos2(x)sin2(x)sin(x)=2sin(x)cos2(x)+cos2(x)sin(x)sin3(x)=3sin(x)cos2(x)sin3(x)=3sin(x)(1sin2(x))sin3(x)=3sin(x)3sin3(x)sin3(x)sin(3x)=3sin(x)4sin3(x)4sin3(x)=3sin(x)sin(3x)sin3(x)=14(3sin(x)sin(3x))

 

Double Integration by parts:

uv=uv(uv)|Integrate by parts(uv)=uv(uv)|Integrate by partsuv=uv(uv(uv))uv=uvuv+(uv)

 

x2sin3(x) dxu=x2u=2xu=2v=sin3(x)uv=uvuv+(uv)x2sin3(x)=x2sin3(x)2xsin3(x)+2sin3(x)

 

 

sin3(x) dx

sin3(x)=14(3sin(x)sin(3x))sin3(x)=14(3cos(x)+13cos(3x))

 

sin3(x) dx

sin3(x)=14(3cos(x)+13cos(3x))sin3(x)=14(3sin(x)+19sin(3x))

 

sin3(x) dx

sin3(x)=14(3sin(x)+19sin(3x))sin3(x)=14(3cos(x)127cos(3x))

 

x2sin3(x)=x2sin3(x)2xsin3(x)+2sin3(x)x2sin3(x)=x214[3cos(x)+13cos(3x)]2x14[3sin(x)+19sin(3x)]+214[3cos(x)127cos(3x)]x2sin3(x)=14x2[3cos(x)+13cos(3x)]12x[3sin(x)+19sin(3x)]+12[3cos(x)127cos(3x)]

 

laugh

 Apr 4, 2017

0 Online Users