+0  
 
0
40
1
avatar

Find the maximum value of \(2x + 2\sqrt{x(1-x)}\) when \(0 \leq x \leq 1.\)

Guest Apr 25, 2018
Sort: 

1+0 Answers

 #1
avatar+86556 
+1

f(x)  = 2x  + 2[ x  ( 1 - x) ]^(1/2)

 

f'(x)   2x + 2 [ x - x^2]^(1/2)      take the derivative

 

f '(x) = 2 + [ x - x^2]^(-1/2) (1 - 2x)        set this to 0

 

2  = (2x - 1)  * [x - x^2]^(-1/2)

 

2 (x - x^2)^(1/2)  = 2x - 1        square both sides

 

4 (x - x^2)  =  4x^2 - 4x + 1

 

4x - 4x^2  = 4x^2 - 4x + 1     simplify as

 

8x^2 - 8x + 1  =  0

 

8 (x^2 - x + 1/8)  = 0

 

x^2 - x + 1/8  =  0

 

x^2 - x  + 1/4  =  -1/8 + 1/4

 

(x - 1/2)^2  = 1/8        take the square root of both sides

 

x - 1/2 =  ±√(1/8)

 

x  = ±√(1/8) + 1/2

 

The positive root  gives the  x value of the maximum as  √[1/8] + 1/2  ≈ .3004

 

And the max value  is  ≈ 2.41421

 

 

 

cool cool cool

CPhill  Apr 25, 2018
edited by CPhill  Apr 25, 2018

23 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy