(1) Let $a_1,$ $a_2,$ $a_3$ be real numbers such that|a1−a2|+2|a2−a3|+3|a3−a1|=1.
(2) Let $a_1,$ $a_2,$ $a_3,$ $\dots,$ $a_{10}$ be real numbers such that|a1−a2|+2|a2−a3|+3|a3−a4|+4|a4−a5|+⋯+9|a9−a10|+10|a10−a1|=1.