+0  
 
0
1
1
avatar+820 

Solve the inequality
\frac{3-z}{z+1} \ge 2(z + 4).
Write your answer in interval notation.

 Aug 10, 2024
 #1
avatar+1790 
+1

We can accomplish this problem first by Multiplying by (z + 1)^2 on both sides. Then,we solve for x. 

\((3 - z)(z + 1) \geq 2(z + 4)(z + 1)^2\text{ and }z + 1 \neq 0\\ (z + 1)(2(z + 4)(z + 1) -(3-z)) \leq 0\text{ and }z + 1 \neq 0\\ (z + 1)(2z^2 +11z+5)\leq 0 \text{ and }z + 1 \neq 0\\ (z+1)(2z+1)(z+5)\leq 0 \text{ and }z + 1 \neq 0\\ z \leq -5 \text{ or }-1 < z \leq -\dfrac12\)

 

Writing this in interval notation, we get

\(z \in (-\infty, -5] \cup \left(-1, -\dfrac12\right]\)\

This might be wrong...but it's probably correct LOL :)

Thanks! :)

 Aug 10, 2024
edited by NotThatSmart  Aug 10, 2024

2 Online Users

avatar
avatar