+0  
 
0
43
1
avatar

Define 

 

\(A = \frac{1}{1^2} + \frac{1}{5^2} - \frac{1}{7^2} - \frac{1}{11^2} + \frac{1}{13^2} + \frac{1}{17^2} - \dotsb,\)

 

which omits all terms of the form \(1/{n^2}\) where  is an odd multiple of 3, and

 

\(B = \frac{1}{3^2} - \frac{1}{9^2} + \frac{1}{15^2} - \frac{1}{21^2} + \frac{1}{27^2} - \frac{1}{33^2} + \dotsb,\)

 

which includes only terms of the form \(1/{n^2}\) where \(n\) is an odd multiple of 3.


Determine \(\frac{A}{B}. \)

 

 

 

If each sequence only had addition, this question would be much easier, but the subtraction makes it difficult for me.  Help is greatly appreciated!

 Jun 4, 2021
 #1
avatar+25959 
+1

Define

\(A=\dfrac{1}{1^2}+\dfrac{1}{5^2}-\dfrac{1}{7^2}-\dfrac{1}{11^2}+\dfrac{1}{13^2}+\dfrac{1}{17^2}-\dfrac{1}{19^2}-\dfrac{1}{23^2} + \dotsb,\)

 

which omits all terms of the form \(\dfrac{1}{n^2} \)where  is an odd multiple of 3, and

 

\(B=\dfrac{1}{3^2}-\dfrac{1}{9^2}+\dfrac{1}{15^2}-\dfrac{1}{21^2}+\dfrac{1}{27^2}-\dfrac{1}{33^2}+\dfrac{1}{39^2}-\dfrac{1}{45^2} + \dotsb,\)

 

which includes only terms of the form \(\dfrac{1}{n^2} \) where  is an odd multiple of 3.

Determine \(\dfrac{A}{B}\).

 

\(\begin{array}{|rcll|} \hline A&=&\dfrac{1}{1^2}+\dfrac{1}{5^2}-\dfrac{1}{7^2}-\dfrac{1}{11^2}+\dfrac{1}{13^2}+\dfrac{1}{17^2}-\dfrac{1}{19^2}-\dfrac{1}{23^2} + \dotsb \\ \hline B&=&\dfrac{1}{3^2}-\dfrac{1}{9^2}+\dfrac{1}{15^2}-\dfrac{1}{21^2}+\dfrac{1}{27^2}-\dfrac{1}{33^2}+\dfrac{1}{39^2}-\dfrac{1}{45^2} + \dotsb \\\\ 9B&=&\dfrac{1}{1^2}-\dfrac{1}{3^2}+\dfrac{1}{5^2}-\dfrac{1}{7^2} +\dfrac{1}{9^2}-\dfrac{1}{11^2} +\dfrac{1}{13^2}-\dfrac{1}{15^2} +\dfrac{1}{17^2}-\dfrac{1}{19^2}+\dfrac{1}{21^2} + \dotsb \\\\ 9B&=&A-\dfrac{1}{3^2}+\dfrac{1}{9^2}-\dfrac{1}{15^2}+\dfrac{1}{21^2}-\dotsb \\\\ 9B&=&A-\left( \underbrace{ \dfrac{1}{3^2}-\dfrac{1}{9^2}+\dfrac{1}{15^2}-\dfrac{1}{21^2}+\dotsb }_{=B}\right) \\\\ 9B&=&A-B \\ 10B &=& A \\ \mathbf{ \dfrac{A}{B} } &=& \mathbf{10} \\ \hline \end{array}\)

 

 

laugh

 Jun 5, 2021

9 Online Users

avatar
avatar