what is the integral of 4/sqrt(x^2) ?
$$\int {\frac{ 4 }{ \sqrt{ x^2 } } \ dx } =4*\int { \frac{ 1 }{ x } \ dx }\\we \ substitute \ x=e^u \ then \ \ dx=e^u \ du\\we \ have \ 4* \int { \frac{ e^u }{ e^u } \ du }=4*\int{ \ du }=4*u\\u=\ln{ x} \\solution: \ \ 4*\ln{ (x)}+c$$