integral question
Hello hippie!
\(\int_{0}^{\infty} x^{3} e^{-x^4} dx\ |\ [https://www.integralrechner.de/]\\ = |-\dfrac{e^{-x^4}}{4}\ |_0^\infty =-\dfrac{e^{-\infty^4}}{4}-(-\dfrac{e^{-0^4}}{4})=0-(-\dfrac{1}{4})\)
\(\color{blue}\int_{0}^{\infty} x^{3} e^{-x^4} dx=\dfrac{1}{4}\)
!
I beg your pardon hipie!
I mostly look at the avatar and since yours doesn't have a picture I missed your name.
The link to the integral calculator: https://www.integralrechner.de/
Enter the function x^3e^-x^4 in this way. Then type Los! and click the Rechenweg einschalten marker.
!