+0  
 
+1
52
3
avatar+303 

$\int_{0}^{\infty} x^{3} e^{-x^4} dx$

 Oct 27, 2022
 #1
avatar+14082 
+1

integral question

 

Hello hippie!

 

\(\int_{0}^{\infty} x^{3} e^{-x^4} dx\ |\ [https://www.integralrechner.de/]\\ = |-\dfrac{e^{-x^4}}{4}\ |_0^\infty =-\dfrac{e^{-\infty^4}}{4}-(-\dfrac{e^{-0^4}}{4})=0-(-\dfrac{1}{4})\) 

\(\color{blue}\int_{0}^{\infty} x^{3} e^{-x^4} dx=\dfrac{1}{4}\)

laugh  !

 Oct 27, 2022
edited by asinus  Oct 27, 2022
 #2
avatar+303 
0

I'm not a guest?

hipie  Oct 27, 2022
 #3
avatar+14082 
+1

I beg your pardon hipie!

I mostly look at the avatar and since yours doesn't have a picture I missed your name.

The link to the integral calculator:   https://www.integralrechner.de/

Enter the function x^3e^-x^4 in this way. Then type Los! and click the Rechenweg einschalten marker.

laugh  !

asinus  Oct 27, 2022
edited by asinus  Oct 27, 2022
edited by asinus  Oct 28, 2022

18 Online Users