+0  
 
0
207
1
avatar

Please help with this integral: ∫sin(e^(-2x)) / e^(2x) dx. With steps if possible and thank you.

Guest Jun 12, 2017
 #1
avatar
0

Take the integral:
 integral e^(-2 x) sin(e^(-2 x)) dx
For the integrand e^(-2 x) sin(e^(-2 x)), substitute u = -2 x and du = -2 dx:
 = -1/2 integral e^u sin(e^u) du
For the integrand e^u sin(e^u), substitute s = e^u and ds = e^u du:
 = -1/2 integral sin(s) ds
The integral of sin(s) is -cos(s):
 = (cos(s))/2 + constant
Substitute back for s = e^u:
 = (cos(e^u))/2 + constant
Substitute back for u = -2 x:
Answer: | = 1/2 cos(e^(-2 x)) + constant

Guest Jun 12, 2017

6 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.