+0  
 
0
641
1
avatar

integrate cosx*sinhx dx

 Apr 11, 2016
 #1
avatar
0

Take the integral:
 integral cos(x) sinh(x) dx
For the integrand cos(x) sinh(x), integrate by parts,  integral f dg = f g- integral g df, where
 f = cos(x),     dg = sinh(x)  dx,
 df = -sin(x)  dx,     g = cosh(x):
 integral cos(x) sinh(x) dx = cos(x) cosh(x)+ integral sin(x) cosh(x) dx
For the integrand sin(x) cosh(x), integrate by parts,  integral f dg = f g- integral g df, where
 f = sin(x),     dg = cosh(x)  dx,
 df = cos(x)  dx,     g = sinh(x):
 integral cos(x) sinh(x) dx = sin(x) sinh(x)+cos(x) cosh(x)- integral cos(x) sinh(x) dx
Add  integral cos(x) sinh(x) dx to both sides:
2 integral cos(x) sinh(x) dx = sin(x) sinh(x)+cos(x) cosh(x)+constant
Divide both sides by 2:
Answer: |  integral cos(x) sinh(x) dx = 1/2 (sin(x) sinh(x)+cos(x) cosh(x))+constant

 Apr 11, 2016

0 Online Users