+0  
 
0
382
3
avatar

Integrate the following with steps please: integrate [sin^2 (x) cos^2 (x)] dx from x=0 to pi.

Thank you for any help.

Guest Apr 10, 2017
 #1
avatar
+1

Compute the definite integral:
 integral_0^π sin^2(x) cos^2(x) dx
Write cos^2(x) as 1 - sin^2(x):
 = integral_0^π sin^2(x) (1 - sin^2(x)) dx
Expanding the integrand sin^2(x) (1 - sin^2(x)) gives sin^2(x) - sin^4(x):
 = integral_0^π (sin^2(x) - sin^4(x)) dx
Integrate the sum term by term and factor out constants:
 = - integral_0^π sin^4(x) dx + integral_0^π sin^2(x) dx
Use the reduction formula, integral sin^m(x) dx = -(cos(x) sin^(m - 1)(x))/m + (m - 1)/m integral sin^(-2 + m)(x) dx, where m = 4:
 = 1/4 sin^3(x) cos(x) right bracketing bar _0^π + 1/4 integral_0^π sin^2(x) dx
Evaluate the antiderivative at the limits and subtract.
 1/4 sin^3(x) cos(x) right bracketing bar _0^π = (1/4 sin^3(π) cos(π)) - 1/4 sin^3(0) cos(0) = 0:
 = 1/4 integral_0^π sin^2(x) dx
Write sin^2(x) as 1/2 - 1/2 cos(2 x):
 = 1/4 integral_0^π (1/2 - 1/2 cos(2 x)) dx
Integrate the sum term by term and factor out constants:
 = -1/8 integral_0^π cos(2 x) dx + 1/8 integral_0^π 1 dx
For the integrand cos(2 x), substitute u = 2 x and du = 2 dx.
This gives a new lower bound u = 2 0 = 0 and upper bound u = 2 π:
 = -1/16 integral_0^(2 π) cos(u) du + 1/8 integral_0^π 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of cos(u) is sin(u):
 = (-(sin(u))/16) right bracketing bar _0^(2 π) + 1/8 integral_0^π 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-(sin(u))/16) right bracketing bar _0^(2 π) = (-1/16 sin(2 π)) - (-(sin(0))/16) = 0:
 = 1/8 integral_0^π 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1 is x:
 = x/8 right bracketing bar _0^π
Evaluate the antiderivative at the limits and subtract.
 x/8 right bracketing bar _0^π = π/8 - 0/8 = π/8:
Answer: | = π/8

Guest Apr 10, 2017
 #2
avatar+27035 
+2

Like so:

 

.

Alan  Apr 10, 2017
 #3
avatar+20024 
+3

Integrate the following with steps please:

integrate [sin^2 (x) cos^2 (x)] dx from x=0 to pi.

Thank you for any help.

 

Formula:

\(\begin{array}{|rcll|} \hline \cos^2(x) = \frac12\cdot \Big(1+\cos(2x)\Big) \\ \sin^2(x) = \frac12\cdot \Big(1-\cos(2x)\Big) \\ \hline \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline && \int \limits_{0}^{\pi} {\sin^2(x) \cos^2(x)\ dx} \\ &=& \int \limits_{0}^{\pi} {\frac12\cdot \Big(1-\cos(2x)\Big)\cdot \frac12\cdot \Big(1+\cos(2x)\Big)\ dx} \\ &=& \frac14\cdot \int \limits_{0}^{\pi} { \Big(1-\cos(2x)\Big)\cdot \Big(1+\cos(2x)\Big)\ dx} \\ &=& \frac14\cdot \int \limits_{0}^{\pi} { \Big(1-\cos^2(2x)\Big) \ dx} \quad & | \quad \cos^2(2x) = \frac12\cdot \Big(1+\cos(4x)\Big) \\ &=& \frac14\cdot \int \limits_{0}^{\pi} { \Big(1-\frac12\cdot \Big(1+\cos(4x)\Big) \ dx} \\ &=& \frac14\cdot \int \limits_{0}^{\pi} { \Big(1-\frac12 - \cos(4x)\Big) \ dx} \\ &=& \frac14\cdot \int \limits_{0}^{\pi} { \Big( \frac12 - \cos(4x)\Big) \ dx} \\ &=& \frac14\cdot [\frac{x}{2}-\frac{\sin(4x)}{4}]_{0}^{\pi} \\ &=& \frac18\cdot [ x - \frac{\sin(4x)}{2} ]_{0}^{\pi} \\ &=& \frac18\cdot [ \pi - \sin(4\pi)-(0-\frac{\sin(4\cdot 0)}{2} ) ] \\ &=& \frac18\cdot [ \pi - 0-(0-0) ] \\ &=& \frac18\cdot [ \pi ] \\ &=& \frac{\pi}{8}\\ \hline \end{array}\)

*edited

 

laugh

heureka  Apr 11, 2017
edited by heureka  Apr 11, 2017

37 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.