The triangle  \(\Delta ABC\) is an isosceles triangle where \(AB=4\sqrt2\) and \(\angle B\) is a right angle. If  \(L\) is the incenter of \(\Delta ABC\), then what is \(BL\)?

 Nov 21, 2018



We can use the Law  of Sines to solve this


Since B is the right angle   and the triangle is isosceles....then  angles  A and C = 45°


The incenter of the triangle is the point where the three angle bisectors meet


One of the triangles formed by their intersection is ΔBAL


Since B is bisected....then angle ABL    =  45°


And since A is bisected....angle BAL   = 22.5°


And angle ALB   =  180 - 45 - 22.5   = 112.5°




BL                       AB

_______   =      _______

sin BAL            sin ALB


BL                    4sqrt(2)

____    =        _________

sin 22.5           sin 112.5



                     4sqrt (2) sin 22.5

BL =            _______________     ≈    2.34

                          sin 112.5




cool cool cool  

 Nov 21, 2018

25 Online Users


New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.